Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 27 additions & 0 deletions captum/attr/_core/feature_permutation.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
from captum.attr._core.feature_ablation import FeatureAblation
from captum.log import log_usage
from torch import Tensor
from torch.futures import Future


def _permute_feature(x: Tensor, feature_mask: Tensor) -> Tensor:
Expand Down Expand Up @@ -86,6 +87,7 @@ def __init__(
"""
FeatureAblation.__init__(self, forward_func=forward_func)
self.perm_func = perm_func
self.use_futures = False

# suppressing error caused by the child class not having a matching
# signature to the parent
Expand Down Expand Up @@ -271,6 +273,31 @@ def attribute( # type: ignore
**kwargs,
)

def attribute_future(
self,
inputs: TensorOrTupleOfTensorsGeneric,
target: TargetType = None,
additional_forward_args: Any = None,
feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None,
perturbations_per_eval: int = 1,
show_progress: bool = False,
**kwargs: Any,
) -> Future[TensorOrTupleOfTensorsGeneric]:
if isinstance(kwargs, dict) and "baselines" in kwargs:
del kwargs["baselines"]
return FeatureAblation.attribute.__wrapped__(
self,
inputs,
baselines=None,
target=target,
additional_forward_args=additional_forward_args,
feature_mask=feature_mask,
perturbations_per_eval=perturbations_per_eval,
show_progress=show_progress,
use_futures=self.use_futures,
**kwargs,
)

def _construct_ablated_input(
self,
expanded_input: Tensor,
Expand Down
93 changes: 74 additions & 19 deletions tests/attr/test_feature_permutation.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,25 @@
#!/usr/bin/env python3
from typing import List, Tuple
from typing import Callable, List, Tuple

import torch
from captum.attr._core.feature_permutation import _permute_feature, FeaturePermutation
from parameterized import parameterized
from tests.helpers import BaseTest
from tests.helpers.basic import assertTensorAlmostEqual
from tests.helpers.basic_models import BasicModelWithSparseInputs
from torch import Tensor


# pyre-ignore Undefined attribute [13]
class Test(BaseTest):
def construct_future_forward(self, original_forward: Callable) -> Callable:
def future_forward(*args, **kwargs):
fut = torch.futures.Future()
fut.set_result(original_forward(*args, **kwargs))
return fut

return future_forward

def _check_features_are_permuted(
self, inp: Tensor, perm_inp: Tensor, mask: Tensor
) -> None:
Expand Down Expand Up @@ -76,28 +86,39 @@ def test_perm_fn_broadcastable_masks(self) -> None:

self._check_perm_fn_with_mask(inp, mask)

def test_single_input(self) -> None:
@parameterized.expand([(True,), (False,)])
def test_single_input(self, use_futures) -> None:
batch_size = 2
input_size = (6,)
constant_value = 10000

def forward_func(x: Tensor) -> Tensor:
return x.sum(dim=-1)

feature_importance = FeaturePermutation(forward_func=forward_func)
if use_futures:
feature_importance = FeaturePermutation(
forward_func=self.construct_future_forward(forward_func)
)
feature_importance.use_futures = use_futures

else:
feature_importance = FeaturePermutation(forward_func=forward_func)

inp = torch.randn((batch_size,) + input_size)

inp[:, 0] = constant_value
zeros = torch.zeros_like(inp[:, 0])

attribs = feature_importance.attribute(inp)
if use_futures:
attribs = feature_importance.attribute_future(inp).wait()
else:
attribs = feature_importance.attribute(inp)

self.assertTrue(attribs.squeeze(0).size() == (batch_size,) + input_size)
assertTensorAlmostEqual(self, attribs[:, 0], zeros, delta=0.05, mode="max")
self.assertTrue((attribs[:, 1 : input_size[0]].abs() > 0).all())

def test_multi_input(self) -> None:
@parameterized.expand([(True,), (False,)])
def test_multi_input(self, use_futures) -> None:
batch_size = 20
inp1_size = (5, 2)
inp2_size = (5, 3)
Expand All @@ -112,7 +133,14 @@ def forward_func(*x: Tensor) -> Tensor:

return torch.mean((y - labels) ** 2)

feature_importance = FeaturePermutation(forward_func=forward_func)
if use_futures:
feature_importance = FeaturePermutation(
forward_func=self.construct_future_forward(forward_func)
)
feature_importance.use_futures = use_futures

else:
feature_importance = FeaturePermutation(forward_func=forward_func)

inp = (
torch.randn((batch_size,) + inp1_size),
Expand All @@ -125,7 +153,13 @@ def forward_func(*x: Tensor) -> Tensor:
)

inp[1][:, :, 1] = 4
attribs = feature_importance.attribute(inp, feature_mask=feature_mask)

if use_futures:
attribs = feature_importance.attribute_future(
inp, feature_mask=feature_mask
).wait()
else:
attribs = feature_importance.attribute(inp, feature_mask=feature_mask)

self.assertTrue(isinstance(attribs, tuple))
self.assertTrue(len(attribs) == 2)
Expand All @@ -139,22 +173,33 @@ def forward_func(*x: Tensor) -> Tensor:
self.assertTrue((attribs[0] != 0).all())
self.assertTrue((attribs[1][:, :, 0] != 0).all())

def test_mulitple_perturbations_per_eval(self) -> None:
@parameterized.expand([(True,), (False,)])
def test_mulitple_perturbations_per_eval(self, use_futures) -> None:
perturbations_per_eval = 4
batch_size = 2
input_size = (4,)

inp = torch.randn((batch_size,) + input_size)

def forward_func(x):
def forward_func(x: Tensor) -> Tensor:
return 1 - x

target = 1
feature_importance = FeaturePermutation(forward_func=forward_func)
if use_futures:
feature_importance = FeaturePermutation(
forward_func=self.construct_future_forward(forward_func)
)
feature_importance.use_futures = use_futures
attribs = feature_importance.attribute_future(
inp, perturbations_per_eval=perturbations_per_eval, target=target
).wait()
else:
feature_importance = FeaturePermutation(forward_func=forward_func)

attribs = feature_importance.attribute(
inp, perturbations_per_eval=perturbations_per_eval, target=target
)

attribs = feature_importance.attribute(
inp, perturbations_per_eval=perturbations_per_eval, target=target
)
self.assertTrue(attribs.size() == (batch_size,) + input_size)

for i in range(inp.size(1)):
Expand All @@ -168,16 +213,22 @@ def forward_func(x):
actual_diff = torch.stack([(y[0] - y[1])[target], (y[1] - y[0])[target]])
assertTensorAlmostEqual(self, attribs[:, target], actual_diff)

def test_broadcastable_masks(self) -> None:
@parameterized.expand([(True,), (False,)])
def test_broadcastable_masks(self, use_futures) -> None:
# integration test to ensure that
# permutation function works with custom masks
def forward_func(x: Tensor) -> Tensor:
return x.view(x.shape[0], -1).sum(dim=-1)

batch_size = 2
inp = torch.randn((batch_size,) + (3, 4, 4))

feature_importance = FeaturePermutation(forward_func=forward_func)
if use_futures:
feature_importance = FeaturePermutation(
forward_func=self.construct_future_forward(forward_func)
)
feature_importance.use_futures = use_futures
else:
feature_importance = FeaturePermutation(forward_func=forward_func)

masks = [
torch.tensor([0]),
Expand All @@ -186,8 +237,12 @@ def forward_func(x: Tensor) -> Tensor:
]

for mask in masks:
attribs = feature_importance.attribute(inp, feature_mask=mask)

if use_futures:
attribs = feature_importance.attribute_future(
inp, feature_mask=mask
).wait()
else:
attribs = feature_importance.attribute(inp, feature_mask=mask)
self.assertTrue(attribs is not None)
self.assertTrue(attribs.shape == inp.shape)

Expand Down