Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,9 @@
- in `classical_sets.v`:
+ lemmas `properW`, `properxx`

- in `classical_sets.v`:
+ lemma `Zorn_bigcup`

### Changed

- moved from `lebesgue_measure.v` to `real_interval.v`:
Expand Down
37 changes: 32 additions & 5 deletions classical/classical_sets.v
Original file line number Diff line number Diff line change
Expand Up @@ -2677,12 +2677,12 @@ Lemma Zorn T (R : T -> T -> Prop) :
exists t, forall s, R t s -> s = t.
Proof.
move=> Rrefl Rtrans Rantisym Rtot_max.
set totR := ({A : set T | total_on A R}).
pose totR := {A : set T | total_on A R}.
set R' := fun A B : totR => sval A `<=` sval B.
have R'refl A : R' A A by [].
have R'trans A B C : R' A B -> R' B C -> R' A C by apply: subset_trans.
have R'antisym A B : R' A B -> R' B A -> A = B.
rewrite /R'; case: A; case: B => /= B totB A totA sAB sBA.
rewrite /R'; move: A B => [/= A totA] [/= B totB] sAB sBA.
by apply: eq_exist; rewrite predeqE=> ?; split=> [/sAB|/sBA].
have R'tot_lub A : total_on A R' -> exists t, (forall s, A s -> R' s t) /\
forall r, (forall s, A s -> R' s r) -> R' t r.
Expand All @@ -2693,7 +2693,7 @@ have R'tot_lub A : total_on A R' -> exists t, (forall s, A s -> R' s t) /\
by have /(_ _ _ Cs Ct) := svalP C.
by have /(_ _ _ Bs Bt) := svalP B.
exists (exist _ (\bigcup_(B in A) sval B) AUtot); split.
by move=> B ???; exists B.
by move=> B ? ? ?; exists B.
by move=> B Bub ? /= [? /Bub]; apply.
apply: contrapT => nomax.
have {}nomax t : exists s, R t s /\ s <> t.
Expand All @@ -2708,9 +2708,9 @@ have Astot : total_on (sval A `|` [set s]) R.
by move=> [/tub Rvt|->]; right=> //; apply: Rtrans Rts.
move=> [Av|->]; [apply: (svalP A)|left] => //.
by apply: Rtrans Rts; apply: tub.
exists (exist _ (sval A `|` [set s]) Astot); split; first by move=> ??; left.
exists (exist _ (sval A `|` [set s]) Astot); split; first by move=> ? ?; left.
split=> [AeAs|[B Btot] sAB sBAs].
have [/tub Rst|] := (pselect (sval A s)); first exact/snet/Rantisym.
have [/tub Rst|] := pselect (sval A s); first exact/snet/Rantisym.
by rewrite AeAs /=; apply; right.
have [Bs|nBs] := pselect (B s).
by right; apply: eq_exist; rewrite predeqE => r; split=> [/sBAs|[/sAB|->]].
Expand All @@ -2719,6 +2719,33 @@ apply: eq_exist; rewrite predeqE => r; split=> [Br|/sAB] //.
by have /sBAs [|ser] // := Br; rewrite ser in Br.
Qed.

Section Zorn_subset.
Variables (T : Type) (P : set (set T)).

Lemma Zorn_bigcup :
(forall F : set (set T), F `<=` P -> total_on F subset ->
P (\bigcup_(X in F) X)) ->
exists A, P A /\ forall B, A `<` B -> ~ P B.
Proof.
move=> totP; pose R (sA sB : P) := sval sA `<=` sval sB.
have {}totR F (FR : total_on F R) : exists sB, forall sA, F sA -> R sA sB.
have FP : [set val x | x in F] `<=` P.
by move=> _ [X FX <-]; apply: set_mem; apply: valP.
have totF : total_on [set val x | x in F] subset.
by move=> _ _ [X FX <-] [Y FY <-]; apply: FR.
exists (SigSub (mem_set (totP _ FP totF))) => A FA; rewrite /R/=.
exact: (bigcup_sup (imageP val _)).
have [| | |sA sAmax] := Zorn _ _ _ totR.
- by move=> ?; exact: subset_refl.
- by move=> ? ? ?; exact: subset_trans.
- by move=> [A PA] [B PB]; rewrite /R /= => AB BA; exact/eq_exist/seteqP.
- exists (val sA); case: sA => A PA /= in sAmax *; split; first exact: set_mem.
move=> B AB PB; have [BA] := sAmax (SigSub (mem_set PB)) (properW AB).
by move: AB; rewrite BA; exact: properxx.
Qed.

End Zorn_subset.

Definition premaximal T (R : T -> T -> Prop) (t : T) :=
forall s, R t s -> R s t.

Expand Down