Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,11 @@
- in `lebesgue_integral.v`
+ lemmas `integral0_eq`, `fubini_tonelli`

- in `classical_sets.v`:
+ lemma `trivIset_mkcond`
- in `numfun.v`:
+ lemmas `xsection_indic`, `ysection_indic`

### Changed

- in `fsbigop.v`:
Expand All @@ -55,6 +60,10 @@

- in `measurable.v`:
+ `measurable_fun_comp` -> `measurable_funT_comp`
- in `numfun.v`:
+ `IsNonNegFun` -> `isNonNegFun`
- in `lebesgue_integral.v`:
+ `IsMeasurableFunP` -> `isMeasurableFun`

### Generalized

Expand All @@ -64,6 +73,8 @@
+ lemma `measurable_fun_comp`
- in `lebesgue_integral.v`:
+ lemma `measurable_sfunP`
- in `measure.v`:
+ lemma `measure_bigcup` generalized,

### Deprecated

Expand Down
13 changes: 11 additions & 2 deletions classical/classical_sets.v
Original file line number Diff line number Diff line change
Expand Up @@ -2382,6 +2382,15 @@ Section partitions.
Definition trivIset T I (D : set I) (F : I -> set T) :=
forall i j : I, D i -> D j -> F i `&` F j !=set0 -> i = j.

Lemma trivIset_mkcond T I (D : set I) (F : I -> set T) :
trivIset D F <-> trivIset setT (fun i => if i \in D then F i else set0).
Proof.
split=> [tA i j _ _|tA i j Di Dj]; last first.
by have := tA i j Logic.I Logic.I; rewrite !mem_set.
case: ifPn => iD; last by rewrite set0I => -[].
by case: ifPn => [jD /tA|jD]; [apply; exact: set_mem|rewrite setI0 => -[]].
Qed.

Lemma trivIset_set0 {I T} (D : set I) : trivIset D (fun=> set0 : set T).
Proof. by move=> i j Di Dj; rewrite setI0 => /set0P; rewrite eqxx. Qed.

Expand Down Expand Up @@ -2429,14 +2438,14 @@ apply/trivIsetP => -[/=|]; rewrite /bigcup2 /=.
by move=> [//|j _ _ _]; rewrite setI0.
Qed.

Lemma trivIset_image (T I I' : Type) (D : set I) (f : I -> I') (F : I' -> set T) :
Lemma trivIset_image T I I' (D : set I) (f : I -> I') (F : I' -> set T) :
trivIset D (F \o f) -> trivIset (f @` D) F.
Proof.
by move=> trivF i j [{}i Di <-] [{}j Dj <-] Ffij; congr (f _); apply: trivF.
Qed.
Arguments trivIset_image {T I I'} D f F.

Lemma trivIset_comp (T I I' : Type) (D : set I) (f : I -> I') (F : I' -> set T) :
Lemma trivIset_comp T I I' (D : set I) (f : I -> I') (F : I' -> set T) :
{in D &, injective f} ->
trivIset D (F \o f) = trivIset (f @` D) F.
Proof.
Expand Down
Loading