Skip to content

Alternative definition of Chernoff #1078

@hoheinzollern

Description

@hoheinzollern

Perhaps this version of Chernoff's bound is more useful:

Lemma chernoff (X : {RV P >-> R}) (r a : R) : (0 < r)%R ->
  P [set x | X x >= a]%R <= mmt_gen_fun X r * (expR (- (r * a)))%:E.
Proof.
move=> t0.
rewrite /mmt_gen_fun; have -> : expR \o r \o* X =
    (normr \o normr) \o [the {mfun T >-> R} of expR \o r \o* X].
  by apply: funext => t /=; rewrite normr_id ger0_norm ?expR_ge0.
rewrite expRN lee_pdivl_mulr ?expR_gt0//.
rewrite (le_trans _ (markov _ (expR_gt0 (r * a)) _ _ _))//; last first.
  exact: (monoW_in (@ger0_le_norm _)).
rewrite ger0_norm ?expR_ge0// muleC lee_pmul2l// ?lte_fin ?expR_gt0//.
rewrite [X in _ <= P X](_ : _ = [set x | a <= X x]%R)//; apply: eq_set => t/=.
by rewrite ger0_norm ?expR_ge0// lee_fin ler_expR  mulrC ler_pmul2r.
Qed.

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancement ✨This issue/PR is about adding new features enhancing the libraryquestion ❓There is an unanswered question here

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions