Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions vit_pytorch/vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ def forward(self, x):
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.norm = nn.LayerNorm(dim)

self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Expand All @@ -77,8 +77,7 @@ def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x

return self.norm(x)
return x

class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
Expand All @@ -90,7 +89,7 @@ def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, ml

num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling).'

self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
Expand All @@ -106,9 +105,11 @@ def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, ml
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)

self.pool = pool
self.to_latent = nn.Identity()

self.mlp_head = nn.Linear(dim, num_classes)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)

def forward(self, img):
x = self.to_patch_embedding(img)
Expand All @@ -123,5 +124,4 @@ def forward(self, img):

x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]

x = self.to_latent(x)
return self.mlp_head(x)