Skip to content

Fix complex log1p accuracy with large abs values. #88260

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 26 additions & 24 deletions mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -570,37 +570,39 @@ struct Log1pOpConversion : public OpConversionPattern<complex::Log1pOp> {
ConversionPatternRewriter &rewriter) const override {
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);

Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value real = b.create<complex::ReOp>(adaptor.getComplex());
Value imag = b.create<complex::ImOp>(adaptor.getComplex());

Value half = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 0.5));
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value two = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 2));

// log1p(a+bi) = .5*log((a+1)^2+b^2) + i*atan2(b, a + 1)
// log((a+1)+bi) = .5*log(a*a + 2*a + 1 + b*b) + i*atan2(b, a+1)
// log((a+1)+bi) = .5*log1p(a*a + 2*a + b*b) + i*atan2(b, a+1)
Value sumSq = b.create<arith::MulFOp>(real, real, fmf.getValue());
sumSq = b.create<arith::AddFOp>(
sumSq, b.create<arith::MulFOp>(real, two, fmf.getValue()),
fmf.getValue());
sumSq = b.create<arith::AddFOp>(
sumSq, b.create<arith::MulFOp>(imag, imag, fmf.getValue()),
fmf.getValue());
Value logSumSq =
b.create<math::Log1pOp>(elementType, sumSq, fmf.getValue());
Value resultReal = b.create<arith::MulFOp>(logSumSq, half, fmf.getValue());

Value realPlusOne = b.create<arith::AddFOp>(real, one, fmf.getValue());

Value resultImag =
b.create<math::Atan2Op>(elementType, imag, realPlusOne, fmf.getValue());
Value realPlusOne = b.create<arith::AddFOp>(real, one, fmf);
Value absRealPlusOne = b.create<math::AbsFOp>(realPlusOne, fmf);
Value absImag = b.create<math::AbsFOp>(imag, fmf);

Value maxAbs = b.create<arith::MaximumFOp>(absRealPlusOne, absImag, fmf);
Value minAbs = b.create<arith::MinimumFOp>(absRealPlusOne, absImag, fmf);

Value maxAbsOfRealPlusOneAndImagMinusOne = b.create<arith::SelectOp>(
b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, realPlusOne, absImag,
fmf),
real, b.create<arith::SubFOp>(maxAbs, one, fmf));
Value minMaxRatio = b.create<arith::DivFOp>(minAbs, maxAbs, fmf);
Value logOfMaxAbsOfRealPlusOneAndImag =
b.create<math::Log1pOp>(maxAbsOfRealPlusOneAndImagMinusOne, fmf);
Value logOfSqrtPart = b.create<math::Log1pOp>(
b.create<arith::MulFOp>(minMaxRatio, minMaxRatio, fmf), fmf);
Value r = b.create<arith::AddFOp>(
b.create<arith::MulFOp>(half, logOfSqrtPart, fmf),
logOfMaxAbsOfRealPlusOneAndImag, fmf);
Value resultReal = b.create<arith::SelectOp>(
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, r, r, fmf), minAbs,
r);
Value resultImag = b.create<math::Atan2Op>(imag, realPlusOne, fmf);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
Expand Down
48 changes: 31 additions & 17 deletions mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -300,15 +300,22 @@ func.func @complex_log1p(%arg: complex<f32>) -> complex<f32> {
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[ONE_HALF:.*]] = arith.constant 5.000000e-01 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[TWO:.*]] = arith.constant 2.000000e+00 : f32
// CHECK: %[[SQ_SUM_0:.*]] = arith.mulf %[[REAL]], %[[REAL]] : f32
// CHECK: %[[TWO_REAL:.*]] = arith.mulf %[[REAL]], %[[TWO]] : f32
// CHECK: %[[SQ_SUM_1:.*]] = arith.addf %[[SQ_SUM_0]], %[[TWO_REAL]] : f32
// CHECK: %[[SQ_IMAG:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] : f32
// CHECK: %[[SQ_SUM_2:.*]] = arith.addf %[[SQ_SUM_1]], %[[SQ_IMAG]] : f32
// CHECK: %[[LOG_SQ_SUM:.*]] = math.log1p %[[SQ_SUM_2]] : f32
// CHECK: %[[RESULT_REAL:.*]] = arith.mulf %[[LOG_SQ_SUM]], %[[ONE_HALF]] : f32
// CHECK: %[[REAL_PLUS_ONE:.*]] = arith.addf %[[REAL]], %[[ONE]] : f32
// CHECK: %[[ABS_REAL_PLUS_ONE:.*]] = math.absf %[[REAL_PLUS_ONE]] : f32
// CHECK: %[[ABS_IMAG:.*]] = math.absf %[[IMAG]] : f32
// CHECK: %[[MAX:.*]] = arith.maximumf %[[ABS_REAL_PLUS_ONE]], %[[ABS_IMAG]] : f32
// CHECK: %[[MIN:.*]] = arith.minimumf %[[ABS_REAL_PLUS_ONE]], %[[ABS_IMAG]] : f32
// CHECK: %[[CMPF:.*]] = arith.cmpf ogt, %[[REAL_PLUS_ONE]], %[[ABS_IMAG]] : f32
// CHECK: %[[MAX_MINUS_ONE:.*]] = arith.subf %[[MAX]], %cst_0 : f32
// CHECK: %[[SELECT:.*]] = arith.select %[[CMPF]], %0, %[[MAX_MINUS_ONE]] : f32
// CHECK: %[[MIN_MAX_RATIO:.*]] = arith.divf %[[MIN]], %[[MAX]] : f32
// CHECK: %[[LOG_1:.*]] = math.log1p %[[SELECT]] : f32
// CHECK: %[[RATIO_SQ:.*]] = arith.mulf %[[MIN_MAX_RATIO]], %[[MIN_MAX_RATIO]] : f32
// CHECK: %[[LOG_SQ:.*]] = math.log1p %[[RATIO_SQ]] : f32
// CHECK: %[[HALF_LOG_SQ:.*]] = arith.mulf %cst, %[[LOG_SQ]] : f32
// CHECK: %[[R:.*]] = arith.addf %[[HALF_LOG_SQ]], %[[LOG_1]] : f32
// CHECK: %[[ISNAN:.*]] = arith.cmpf uno, %[[R]], %[[R]] : f32
// CHECK: %[[RESULT_REAL:.*]] = arith.select %[[ISNAN]], %[[MIN]], %[[R]] : f32
// CHECK: %[[RESULT_IMAG:.*]] = math.atan2 %[[IMAG]], %[[REAL_PLUS_ONE]] : f32
// CHECK: %[[RESULT:.*]] = complex.create %[[RESULT_REAL]], %[[RESULT_IMAG]] : complex<f32>
// CHECK: return %[[RESULT]] : complex<f32>
Expand Down Expand Up @@ -963,15 +970,22 @@ func.func @complex_log1p_with_fmf(%arg: complex<f32>) -> complex<f32> {
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[ONE_HALF:.*]] = arith.constant 5.000000e-01 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[TWO:.*]] = arith.constant 2.000000e+00 : f32
// CHECK: %[[SQ_SUM_0:.*]] = arith.mulf %[[REAL]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[TWO_REAL:.*]] = arith.mulf %[[REAL]], %[[TWO]] fastmath<nnan,contract> : f32
// CHECK: %[[SQ_SUM_1:.*]] = arith.addf %[[SQ_SUM_0]], %[[TWO_REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[SQ_IMAG:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[SQ_SUM_2:.*]] = arith.addf %[[SQ_SUM_1]], %[[SQ_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[LOG_SQ_SUM:.*]] = math.log1p %[[SQ_SUM_2]] fastmath<nnan,contract> : f32
// CHECK: %[[RESULT_REAL:.*]] = arith.mulf %[[LOG_SQ_SUM]], %[[ONE_HALF]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_PLUS_ONE:.*]] = arith.addf %[[REAL]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_PLUS_ONE:.*]] = arith.addf %[[REAL]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_REAL_PLUS_ONE:.*]] = math.absf %[[REAL_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_IMAG:.*]] = math.absf %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[MAX:.*]] = arith.maximumf %[[ABS_REAL_PLUS_ONE]], %[[ABS_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[MIN:.*]] = arith.minimumf %[[ABS_REAL_PLUS_ONE]], %[[ABS_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[CMPF:.*]] = arith.cmpf ogt, %[[REAL_PLUS_ONE]], %[[ABS_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[MAX_MINUS_ONE:.*]] = arith.subf %[[MAX]], %cst_0 fastmath<nnan,contract> : f32
// CHECK: %[[SELECT:.*]] = arith.select %[[CMPF]], %0, %[[MAX_MINUS_ONE]] : f32
// CHECK: %[[MIN_MAX_RATIO:.*]] = arith.divf %[[MIN]], %[[MAX]] fastmath<nnan,contract> : f32
// CHECK: %[[LOG_1:.*]] = math.log1p %[[SELECT]] fastmath<nnan,contract> : f32
// CHECK: %[[RATIO_SQ:.*]] = arith.mulf %[[MIN_MAX_RATIO]], %[[MIN_MAX_RATIO]] fastmath<nnan,contract> : f32
// CHECK: %[[LOG_SQ:.*]] = math.log1p %[[RATIO_SQ]] fastmath<nnan,contract> : f32
// CHECK: %[[HALF_LOG_SQ:.*]] = arith.mulf %cst, %[[LOG_SQ]] fastmath<nnan,contract> : f32
// CHECK: %[[R:.*]] = arith.addf %[[HALF_LOG_SQ]], %[[LOG_1]] fastmath<nnan,contract> : f32
// CHECK: %[[ISNAN:.*]] = arith.cmpf uno, %[[R]], %[[R]] fastmath<nnan,contract> : f32
// CHECK: %[[RESULT_REAL:.*]] = arith.select %[[ISNAN]], %[[MIN]], %[[R]] : f32
// CHECK: %[[RESULT_IMAG:.*]] = math.atan2 %[[IMAG]], %[[REAL_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[RESULT:.*]] = complex.create %[[RESULT_REAL]], %[[RESULT_IMAG]] : complex<f32>
// CHECK: return %[[RESULT]] : complex<f32>
Expand Down
Loading