Skip to content

[mlir][tosa] Fix level check on unranked input tensor #140795

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 22, 2025

Conversation

lhutton1
Copy link
Contributor

This commit fixes a segfault that occurred on operators with unranked input tensors. Operator specific level checks performed before the rank check incorrectly assumed all inputs were shaped.

This commit fixes a segfault that occurred on operators with
unranked input tensors. Operator specific level checks performed
before the rank check incorrectly assumed all inputs were shaped.

Change-Id: Ib1e60f5bd59f1bd74c0276fe208383ef30dceb18
@llvmbot
Copy link
Member

llvmbot commented May 20, 2025

@llvm/pr-subscribers-mlir-tosa

@llvm/pr-subscribers-mlir

Author: Luke Hutton (lhutton1)

Changes

This commit fixes a segfault that occurred on operators with unranked input tensors. Operator specific level checks performed before the rank check incorrectly assumed all inputs were shaped.


Patch is 26.17 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/140795.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Tosa/Transforms/TosaValidation.cpp (+4-4)
  • (modified) mlir/test/Dialect/Tosa/level_check.mlir (+87-79)
diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaValidation.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaValidation.cpp
index feedc5057bea0..ddbd7391555d7 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaValidation.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaValidation.cpp
@@ -758,6 +758,10 @@ LogicalResult TosaValidation::applyLevelCheck(Operation *op) {
     return success();
   }
 
+  // check rank and sizes early so later checks can assume shaped operands
+  if (!levelCheckRanksAndSizes(op))
+    return failure();
+
   // additional level checks from spec 0.70
   if (!levelCheckPool<tosa::AvgPool2dOp>(op) ||
       !levelCheckConv<tosa::Conv2DOp>(op) ||
@@ -770,10 +774,6 @@ LogicalResult TosaValidation::applyLevelCheck(Operation *op) {
     return failure();
   }
 
-  if (!levelCheckRanksAndSizes(op)) {
-    return failure();
-  }
-
   // level check MAX_TENSOR_LIST_SIZE
   if (!levelCheckListSize(op)) {
     return failure();
diff --git a/mlir/test/Dialect/Tosa/level_check.mlir b/mlir/test/Dialect/Tosa/level_check.mlir
index d24c1fa57883d..e7d0a0e1fa4ea 100644
--- a/mlir/test/Dialect/Tosa/level_check.mlir
+++ b/mlir/test/Dialect/Tosa/level_check.mlir
@@ -547,20 +547,20 @@ func.func @test_avgpool2d_stride_x(%arg0: tensor<1x32x8194x8xf32>, %arg1: tensor
 
 // -----
 
-func.func @test_conv2d_dilation_y(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv2d_dilation_y(%arg0: tensor<1x8192x8192x1xf32>, %arg1: tensor<16x1025x1024x1xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>) -> tensor<1x1x7170x16xf32> {
   // expected-error@+1 {{'tosa.conv2d' op failed level check: dilation_y * KH <= MAX_KERNEL}}
-  %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg3 {acc_type = f32, dilation = array<i64: 4097, 1>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} :
-            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+  %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg3 {acc_type = f32, dilation = array<i64: 8, 1>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} :
+            (tensor<1x8192x8192x1xf32>, tensor<16x1025x1024x1xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x7170x16xf32>
+  return %0 : tensor<1x1x7170x16xf32>
 }
 
 // -----
 
-func.func @test_conv2d_dilation_x(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv2d_dilation_x(%arg0: tensor<1x8192x8192x1xf32>, %arg1: tensor<16x1024x1025x1xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>) -> tensor<1x7170x1x16xf32> {
   // expected-error@+1 {{'tosa.conv2d' op failed level check: dilation_x * KW <= MAX_KERNEL}}
-  %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg3 {acc_type = f32, dilation = array<i64: 1, 4097>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} :
-            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+  %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg3 {acc_type = f32, dilation = array<i64: 1, 8>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} :
+            (tensor<1x8192x8192x1xf32>, tensor<16x1024x1025x1xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x7170x1x16xf32>
+  return %0 : tensor<1x7170x1x16xf32>
 }
 
 // -----
@@ -601,200 +601,201 @@ func.func @test_conv2d_pad_right(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x
 
 // -----
 
-func.func @test_conv2d_stride_y(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv2d_stride_y(%arg0: tensor<1x8194x33x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>) -> tensor<1x2x33x16xf32> {
   // expected-error@+1 {{'tosa.conv2d' op failed level check: stride <= MAX_STRIDE}}
   %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg3 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 8193, 1>} :
-            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+            (tensor<1x8194x33x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x2x33x16xf32>
+  return %0 : tensor<1x2x33x16xf32>
 }
 
 // -----
 
-func.func @test_conv2d_stride_x(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv2d_stride_x(%arg0: tensor<1x33x8194x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>) -> tensor<1x33x2x16xf32> {
   // expected-error@+1 {{'tosa.conv2d' op failed level check: stride <= MAX_STRIDE}}
   %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg3 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 8193>} :
-            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+            (tensor<1x33x8194x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x33x2x16xf32>
+  return %0 : tensor<1x33x2x16xf32>
 }
 
 // -----
 
-func.func @test_conv3d_dilation_d(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv3d_dilation_d(%arg0: tensor<1x8192x1x1x8xf32>, %arg1: tensor<16x1025x1x1x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x2x2x16xf32> {
   // expected-error@+1 {{'tosa.conv3d' op failed level check: dilation_d * KD <= MAX_KERNEL}}
-  %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 4097, 1, 1>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
-            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+  %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 8, 1, 1>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
+            (tensor<1x8192x1x1x8xf32>, tensor<16x1025x1x1x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x2x2x16xf32>
+  return %0 : tensor<1x1x2x2x16xf32>
 }
 
 // -----
 
-func.func @test_conv3d_dilation_y(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv3d_dilation_y(%arg0: tensor<1x1x8192x1x8xf32>, %arg1: tensor<16x1x1025x1x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x2x1x2x16xf32> {
   // expected-error@+1 {{'tosa.conv3d' op failed level check: dilation_y * KH <= MAX_KERNEL}}
-  %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 4097, 1>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
-            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+  %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 8, 1>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
+            (tensor<1x1x8192x1x8xf32>, tensor<16x1x1025x1x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x2x1x2x16xf32>
+  return %0 : tensor<1x2x1x2x16xf32>
 }
 
 // -----
 
-func.func @test_conv3d_dilation_x(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv3d_dilation_x(%arg0: tensor<1x1x1x8192x8xf32>, %arg1: tensor<16x1x1x1025x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x2x2x1x16xf32> {
   // expected-error@+1 {{'tosa.conv3d' op failed level check: dilation_x * KW <= MAX_KERNEL}}
-  %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 4097>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
-            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+  %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 8>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
+            (tensor<1x1x1x8192x8xf32>, tensor<16x1x1x1025x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x2x2x1x16xf32>
+  return %0 : tensor<1x2x2x1x16xf32>
 }
 
 // -----
 
-func.func @test_conv3d_pad_d0(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv3d_pad_d0(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x8194x32x32x16xf32> {
   // expected-error@+1 {{'tosa.conv3d' op failed level check: pad <= MAX_KERNEL}}
   %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 8193, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
-            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x8194x32x32x16xf32>
+  return %0 : tensor<1x8194x32x32x16xf32>
 }
 
 // -----
 
-func.func @test_conv3d_pad_d1(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv3d_pad_d1(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x8194x32x32x16xf32> {
   // expected-error@+1 {{'tosa.conv3d' op failed level check: pad <= MAX_KERNEL}}
   %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 1, 8193, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
-            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x8194x32x32x16xf32>
+  return %0 : tensor<1x8194x32x32x16xf32>
 }
 
 // -----
 
-func.func @test_conv3d_pad_top(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv3d_pad_top(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x8225x32x16xf32> {
   // expected-error@+1 {{'tosa.conv3d' op failed level check: pad <= MAX_KERNEL}}
   %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 8193, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
-            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x8225x32x16xf32>
+  return %0 : tensor<1x1x8225x32x16xf32>
 }
 
 // -----
 
-func.func @test_conv3d_pad_bottom(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv3d_pad_bottom(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x8224x32x16xf32> {
   // expected-error@+1 {{'tosa.conv3d' op failed level check: pad <= MAX_KERNEL}}
   %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 0, 8193, 0, 1>, stride = array<i64: 1, 1, 1>} :
-            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x8224x32x16xf32>
+  return %0 : tensor<1x1x8224x32x16xf32>
 }
 
 // -----
 
-func.func @test_conv3d_pad_left(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv3d_pad_left(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x8225x16xf32> {
   // expected-error@+1 {{'tosa.conv3d' op failed level check: pad <= MAX_KERNEL}}
   %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 0, 1, 8193, 1>, stride = array<i64: 1, 1, 1>} :
-            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x8225x16xf32>
+  return %0 : tensor<1x1x32x8225x16xf32>
 }
 
 // -----
 
-func.func @test_conv3d_pad_right(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv3d_pad_right(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x8224x16xf32> {
   // expected-error@+1 {{'tosa.conv3d' op failed level check: pad <= MAX_KERNEL}}
   %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 0, 1, 0, 8193>, stride = array<i64: 1, 1, 1>} :
-            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x8224x16xf32>
+  return %0 : tensor<1x1x32x8224x16xf32>
 }
 
 // -----
 
-func.func @test_conv3d_stride_d(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv3d_stride_d(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32>{
   // expected-error@+1 {{'tosa.conv3d' op failed level check: stride <= MAX_STRIDE}}
   %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 8193, 1, 1>} :
-            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
+  return %0 : tensor<1x1x32x32x16xf32>
 }
 
 // -----
 
-func.func @test_conv3d_stride_y(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv3d_stride_y(%arg0: tensor<1x1x8194x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x2x32x16xf32> {
   // expected-error@+1 {{'tosa.conv3d' op failed level check: stride <= MAX_STRIDE}}
   %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 8193, 1>} :
-            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+            (tensor<1x1x8194x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x2x32x16xf32>
+  return %0 : tensor<1x1x2x32x16xf32>
 }
 
 // -----
 
-func.func @test_conv3d_stride_x(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_conv3d_stride_x(%arg0: tensor<1x1x32x8194x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x2x16xf32> {
   // expected-error@+1 {{'tosa.conv3d' op failed level check: stride <= MAX_STRIDE}}
   %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 8193>} :
-            (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+            (tensor<1x1x32x8194x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x2x16xf32>
+  return %0 : tensor<1x1x32x2x16xf32>
 }
 
 // -----
 
-func.func @test_depthwise_conv2d_dilation_y(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_depthwise_conv2d_dilation_y(%arg0: tensor<1x8192x8192x4xf32>, %arg1: tensor<1025x16x4x1xf32>, %arg2: tensor<4xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x8178x4xf32> {
   // expected-error@+1 {{'tosa.depthwise_conv2d' op failed level check: dilation_y * KH <= MAX_KERNEL}}
-  %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 4097, 1>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} :
-            (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+  %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 8, 1>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} :
+            (tensor<1x8192x8192x4xf32>, tensor<1025x16x4x1xf32>, tensor<4xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x8178x4xf32>
+  return %0 : tensor<1x1x8178x4xf32>
 }
 
 // -----
 
-func.func @test_depthwise_conv2d_dilation_x(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_depthwise_conv2d_dilation_x(%arg0: tensor<1x8192x8192x4xf32>, %arg1: tensor<16x1025x4x1xf32>, %arg2: tensor<4xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x8178x1x4xf32> {
   // expected-error@+1 {{'tosa.depthwise_conv2d' op failed level check: dilation_x * KW <= MAX_KERNEL}}
-  %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 4097>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} :
-            (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
-  return %0 : tensor<*xf32>
+  %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 8>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} :
+            (tensor<1x8192x8192x4xf32>, tensor<16x1025x4x1xf32>, tensor<4xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x8178x1x4xf32>
+  return %0 : tensor<1x8178x1x4xf32>
 }
 
 // -----
 
-func.func @test_depthwise_conv2d_pad_top(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
+func.func @test_depthwise_conv2d_pad_top(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64...
[truncated]

@udaya-ranga
Copy link
Contributor

LGTM

Copy link
Member

@Jerry-Ge Jerry-Ge left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@leandron leandron merged commit fbf7878 into llvm:main May 22, 2025
14 checks passed
sivan-shani pushed a commit to sivan-shani/llvm-project that referenced this pull request Jun 3, 2025
This commit fixes a segfault that occurred on operators with unranked
input tensors. Operator specific level checks performed before the rank
check incorrectly assumed all inputs were shaped.
ajaden-codes pushed a commit to Jaddyen/llvm-project that referenced this pull request Jun 6, 2025
This commit fixes a segfault that occurred on operators with unranked
input tensors. Operator specific level checks performed before the rank
check incorrectly assumed all inputs were shaped.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants