Skip to content

[MLIR][linalg][vectorization] failure for an nd extract case #107476

@nirvedhmeshram

Description

@nirvedhmeshram

For the following IR

#map = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<(d0, d1, d2) -> (d0 + d1 + d2)>
func.func @gather_failure(%arg0: tensor<8x128x768xf32>, %arg2: tensor<8x1xf32>, %arg3 : index) -> tensor<8x1xf32> {
  %c0 = arith.constant 0 : index
  %1 = linalg.generic {
    indexing_maps = [#map], 
    iterator_types = ["parallel", "parallel"]
  } outs(%arg2 : tensor<8x1xf32>) {
  ^bb0(%arg5: f32):
      %2 = linalg.index 0 : index
      %3 = linalg.index 1 : index
      %4 = affine.apply #map1(%arg3, %3, %arg3)
    %extracted = tensor.extract %arg0[%2, %c0, %4] : tensor<8x128x768xf32>
    linalg.yield %extracted : f32
  } -> tensor<8x1xf32>
  return %1 : tensor<8x1xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg2: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["linalg.generic"]} in %arg2 : (!transform.any_op) -> !transform.any_op
    %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
    %2 = transform.structured.vectorize_children_and_apply_patterns %1 {vectorize_nd_extract} : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}

run

mlir-opt -transform-interpreter -split-input-file test.mlir 

It gives the error

within split at test_gather_core.mlir:1 offset :13:18: error: 'vector.shape_cast' op source/result number of elements must match
    %extracted = tensor.extract %arg0[%2, %c0, %4] : tensor<8x128x768xf32>
                 ^
within split at test_gather_core.mlir:1 offset :13:18: note: see current operation: %7 = "vector.shape_cast"(%5) : (vector<8x1xindex>) -> vector<1xindex>

with verify-each=0 you can see the following output IR

#map = affine_map<(d0, d1, d2) -> (d1, d2)>
#map1 = affine_map<(d0, d1) -> (d0, d1)>
"builtin.module"() ({
  "func.func"() <{function_type = (tensor<8x128x768xf32>, tensor<8x1xf32>, index) -> tensor<8x1xf32>, sym_name = "gather_failure"}> ({
  ^bb0(%arg1: tensor<8x128x768xf32>, %arg2: tensor<8x1xf32>, %arg3: index):
    %3 = "arith.constant"() <{value = 0.000000e+00 : f32}> : () -> f32
    %4 = "arith.constant"() <{value = 0 : i32}> : () -> i32
    %5 = "arith.constant"() <{value = 0 : index}> : () -> index
    %6 = "arith.constant"() <{value = dense<[0, 1, 2, 3, 4, 5, 6, 7]> : vector<8xindex>}> : () -> vector<8xindex>
    %7 = "vector.broadcast"(%6) : (vector<8xindex>) -> vector<1x8xindex>
    %8 = "vector.transpose"(%7) <{permutation = array<i64: 1, 0>}> : (vector<1x8xindex>) -> vector<8x1xindex>
    %9 = "arith.addi"(%arg3, %arg3) <{overflowFlags = #arith.overflow<none>}> : (index, index) -> index
    %10 = "vector.shape_cast"(%8) : (vector<8x1xindex>) -> vector<1xindex>
    %11 = "vector.extractelement"(%10, %4) : (vector<1xindex>, i32) -> index
    %12 = "vector.transfer_read"(%arg1, %11, %5, %9, %3) <{in_bounds = [true, true], operandSegmentSizes = array<i32: 1, 3, 1, 0>, permutation_map = #map}> : (tensor<8x128x768xf32>, index, index, index, f32) -> vector<8x1xf32>
    %13 = "vector.transfer_write"(%12, %arg2, %5, %5) <{in_bounds = [true, true], operandSegmentSizes = array<i32: 1, 1, 2, 0>, permutation_map = #map1}> : (vector<8x1xf32>, tensor<8x1xf32>, index, index) -> tensor<8x1xf32>
    "func.return"(%13) : (tensor<8x1xf32>) -> ()
  }) : () -> ()

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions