You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<p>The <codeclass="docutils literal notranslate"><spanclass="pre">create_atoms</span></code> commands are used to place
305
+
<p>In line with what is done in previous tutorials, the
306
+
<codeclass="docutils literal notranslate"><spanclass="pre">create_atoms</span></code> commands are used to place
306
307
240 Si atoms and 480 O atoms, respectively. This corresponds to
307
308
an initial density of approximately <spanclass="math notranslate nohighlight">\(2 \, \text{g/cm}^3\)</span>, which is close
308
309
to the expected final density of amorphous silica at 300 K.</p>
309
-
<p>Now, specify the pair coefficients by indicating that the first atom type
310
+
<p>Now, specify the potential parameters by indicating that the first atom type
310
311
is <codeclass="docutils literal notranslate"><spanclass="pre">Si</span></code> and the second is <codeclass="docutils literal notranslate"><spanclass="pre">O</span></code>:</p>
<p>The<codeclass="docutils literal notranslate"><spanclass="pre">fix</span><spanclass="pre">nvt</span></code> command integrates the Nosé-Hoover equations
427
+
<p>As discussed, the<codeclass="docutils literal notranslate"><spanclass="pre">fix</span><spanclass="pre">nvt</span></code> command integrates the Nosé-Hoover equations
423
428
of motion and is employed to control the temperature of the system.
424
429
As observed from the generated images, the atoms
425
430
progressively adjust to the changing box dimensions. At some point,
@@ -447,18 +452,19 @@ <h1>Cracking the silica<a class="headerlink" href="#cracking-the-silica" title="
447
452
<h1>Adding water<aclass="headerlink" href="#adding-water" title="Link to this heading">¶</a></h1>
448
453
<p>To add the water molecules to the silica, we will employ the Monte Carlo
449
454
method in the grand canonical ensemble (GCMC). In short, the system is
450
-
placed into contact with a virtual reservoir of a given chemical
451
-
potential <spanclass="math notranslate nohighlight">\(\mu\)</span>, and multiple attempts to insert water molecules at
452
-
random positions are made. Each attempt is either accepted or rejected
453
-
based on energy considerations. For further details, please refer to
454
-
classical textbooks like Ref. <spanid="id3">[<aclass="reference internal" href="../non-tutorials/bibliography.html#id9" title="Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to applications. Elsevier, 2023.">6</a>]</span>.</p>
455
+
placed into contact with a virtual reservoir containing pure water at a given
456
+
thermodynamic state, and multiple attempts to insert water molecules at
457
+
random positions are made. In the grand
458
+
canonical ensemble, each attempt is either accepted or rejected
459
+
based on internal energy and chemical potential considerations. For further
460
+
details, please refer to classical textbooks like Ref. <spanid="id3">[<aclass="reference internal" href="../non-tutorials/bibliography.html#id9" title="Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to applications. Elsevier, 2023.">6</a>]</span>.</p>
455
461
<sectionid="adapting-the-pair-style">
456
462
<h2>Adapting the pair style<aclass="headerlink" href="#adapting-the-pair-style" title="Link to this heading">¶</a></h2>
457
463
<p>For this next step, we need to specify the force field used to
458
464
model the interactions in the system. The TIP4P/2005 model is employed
459
465
for the water <spanid="id4">[<aclass="reference internal" href="../non-tutorials/bibliography.html#id54" title="Jose LF Abascal and Carlos Vega. A general purpose model for the condensed phases of water: TIP4P/2005. The Journal of chemical physics, 2005.">4</a>]</span>, while no interaction within
460
-
silica is defined, as it will be seen farther below. This is be-
461
-
cause atoms of the silica will remain frozen during this part of the simulation.
466
+
silica is defined, as it will be seen farther below. This is because atoms of
467
+
the silica will remain frozen during this part of the simulation.
462
468
Only the cross-interactions between water and silica need
463
469
to be defined. Create a new file called <strong>gcmc.lmp</strong>, and copy the following
464
470
lines into it:</p>
@@ -556,8 +562,8 @@ <h2>Adapting the pair style<a class="headerlink" href="#adapting-the-pair-style"
556
562
<p>After reading the data file and defining the <codeclass="docutils literal notranslate"><spanclass="pre">h2omol</span></code> molecule from the <strong>H2O.mol</strong>
557
563
file, the <codeclass="docutils literal notranslate"><spanclass="pre">create_atoms</span></code> command is used to include three water molecules
558
564
in the system. Then, add the following <codeclass="docutils literal notranslate"><spanclass="pre">pair_coeff</span></code> (and
559
-
<codeclass="docutils literal notranslate"><spanclass="pre">bond_coeff</span></code> and <codeclass="docutils literal notranslate"><spanclass="pre">angle_coeff</span></code>) commands
560
-
to <strong>gcmc.lmp</strong>:</p>
565
+
<codeclass="docutils literal notranslate"><spanclass="pre">bond_coeff</span></code> and <codeclass="docutils literal notranslate"><spanclass="pre">angle_coeff</span></code>) commands to <strong>gcmc.lmp</strong>
<p>Pair coefficients for the <codeclass="docutils literal notranslate"><spanclass="pre">lj/cut/tip4p/long</span></code>
576
+
<p>Pair coefficients for the <codeclass="docutils literal notranslate"><spanclass="pre">lj/cut/tip4p/long</span></code> pair style
571
577
potential are defined between O(<spanclass="math notranslate nohighlight">\(\text{H}_2\text{O}\)</span>) and between H(<spanclass="math notranslate nohighlight">\(\text{H}_2\text{O}\)</span>)
572
578
atoms, as well as between O(<spanclass="math notranslate nohighlight">\(\text{SiO}_2\)</span>)-O(<spanclass="math notranslate nohighlight">\(\text{H}_2\text{O}\)</span>) and
573
579
Si(<spanclass="math notranslate nohighlight">\(\text{SiO}_2\)</span>)-O(<spanclass="math notranslate nohighlight">\(\text{H}_2\text{O}\)</span>). Thus, the fluid-fluid and the
@@ -598,8 +604,9 @@ <h2>Adapting the pair style<a class="headerlink" href="#adapting-the-pair-style"
598
604
their properties or types.</p>
599
605
</div>
600
606
<p>The number of oxygen atoms from water molecules (i.e. the number of molecules)
601
-
is calculated by the <codeclass="docutils literal notranslate"><spanclass="pre">nO</span></code> variable. The SHAKE algorithm is used to
602
-
maintain the shape of the water molecules over time <spanid="id7">[<aclass="reference internal" href="../non-tutorials/bibliography.html#id27" title="Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman JC Berendsen. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of computational physics, 23(3):327–341, 1977.">35</a>, <aclass="reference internal" href="../non-tutorials/bibliography.html#id28" title="Hans C Andersen. Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of computational Physics, 52(1):24–34, 1983.">36</a>]</span>.</p>
607
+
is calculated by the <codeclass="docutils literal notranslate"><spanclass="pre">nO</span></code> variable. As already discussed in other tutorials,
608
+
the SHAKE algorithm is used to maintain the shape of the water molecules
609
+
over time <spanid="id7">[<aclass="reference internal" href="../non-tutorials/bibliography.html#id27" title="Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman JC Berendsen. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of computational physics, 23(3):327–341, 1977.">35</a>, <aclass="reference internal" href="../non-tutorials/bibliography.html#id28" title="Hans C Andersen. Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of computational Physics, 52(1):24–34, 1983.">36</a>]</span>.</p>
603
610
<p>Finally, let us create images
604
611
of the system using <codeclass="docutils literal notranslate"><spanclass="pre">dump</span><spanclass="pre">image</span></code>:</p>
0 commit comments