Skip to content

Conversation

liangan1
Copy link
Contributor

1)Vertical split embedding to scale-out to much more ranks.
2)LAMB to enable large batch size.

Comment on lines +830 to +839
+ optimizer_dense = optimizers[0][0]([
+ {"params": [p for emb in dlrm.emb_dense for p in emb.parameters()], "lr": args.learning_rate},
+ {"params": dlrm.bot_l.parameters(), "lr": args.learning_rate},
+ {"params": dlrm.top_l.parameters(), "lr": args.learning_rate}
+ ], lr=args.lamblr, bf16=args.bf16)
+ optimizer_sparse = optimizers[1]([
+ {"params": [p for emb in dlrm.emb_sparse for p in emb.parameters()],
+ "lr": args.learning_rate / ext_dist.my_size},
+ ], lr=args.learning_rate)
+ optimizer = (optimizer_dense, optimizer_sparse)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I want to upgrade this DLRM optimization to latest IPEX 1.10, any example on optimizing multi optimizers with ipex?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There is no such case now.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants