-
Notifications
You must be signed in to change notification settings - Fork 30.6k
Closed
Description
Environment info
transformers
version: 3.4.0- Platform: Linux-3.10.0-957.el7.x86_64-x86_64-with-debian-stretch-sid
- Python version: 3.6.9
- PyTorch version (GPU?): 1.6.0 (True)
- Tensorflow version (GPU?): not installed (NA)
- Using GPU in script?: Yes
- Using distributed or parallel set-up in script?: Yes
Error I get
Traceback (most recent call last):
File "/ai/fzc/minGPT/transformerXLtest.py", line 163, in <module>
input_ids=inputs["input_ids"].to(device),
File "/opt/conda/lib/python3.6/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "/opt/conda/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 155, in forward
outputs = self.parallel_apply(replicas, inputs, kwargs)
File "/opt/conda/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 165, in parallel_apply
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
File "/opt/conda/lib/python3.6/site-packages/torch/nn/parallel/parallel_apply.py", line 85, in parallel_apply
output.reraise()
File "/opt/conda/lib/python3.6/site-packages/torch/_utils.py", line 395, in reraise
raise self.exc_type(msg)
StopIteration: Caught StopIteration in replica 0 on device 0.
Original Traceback (most recent call last):
File "/opt/conda/lib/python3.6/site-packages/torch/nn/parallel/parallel_apply.py", line 60, in _worker
output = module(*input, **kwargs)
File "/opt/conda/lib/python3.6/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "/opt/conda/lib/python3.6/site-packages/transformers/modeling_transfo_xl.py", line 866, in forward
mems = self.init_mems(bsz)
File "/opt/conda/lib/python3.6/site-packages/transformers/modeling_transfo_xl.py", line 800, in init_mems
param = next(self.parameters())
StopIteration
To reproduce the problem
Run Code below:
import torch
from torch.nn import DataParallel
from transformers import TransfoXLTokenizer, TransfoXLModel
device = "cuda:0"
# Get model
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLModel.from_pretrained('transfo-xl-wt103', return_dict=True)
model = DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
model.to(device=device)
# Run forward
inputs = tokenizer(["This is an example"], return_tensors="pt")
outputs = model(
input_ids=inputs["input_ids"].to(device),
)
print(f"outputs: {outputs}")
print("Success.")
Metadata
Metadata
Assignees
Labels
No labels