-
Notifications
You must be signed in to change notification settings - Fork 30.9k
Closed
Labels
Core: PipelineInternals of the library; Pipeline.Internals of the library; Pipeline.Ex: Named Entity Recognitionwontfix
Description
🐛 Bug
Information
Model I am using (Bert, XLNet ...): pipeline('ner') and pipeline('feature-extraction')
Language I am using the model on (English, Chinese ...): English
The problem arises when using:
- my own modified scripts: (give details below)
The tasks I am working on is:
- (mostly NA) my own task or dataset: (give details below)
To reproduce
Steps to reproduce the behavior:
- fresh install transformers from source
- run:
from transformers import pipeline
model =pipeline('feature-extraction')
- interrupt download. rerun Port tokenization for the multilingual model #2
Error on reload:
Downloading: 100%
230/230 [00:01<00:00, 136B/s]
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
~/miniconda3/envs/hugging/lib/python3.7/site-packages/transformers/modeling_utils.py in from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
466 try:
--> 467 state_dict = torch.load(resolved_archive_file, map_location="cpu")
468 except Exception:
~/miniconda3/envs/hugging/lib/python3.7/site-packages/torch/serialization.py in load(f, map_location, pickle_module)
357 try:
--> 358 return _load(f, map_location, pickle_module)
359 finally:
~/miniconda3/envs/hugging/lib/python3.7/site-packages/torch/serialization.py in _load(f, map_location, pickle_module)
548 assert key in deserialized_objects
--> 549 deserialized_objects[key]._set_from_file(f, offset, f_should_read_directly)
550 offset = None
RuntimeError: unexpected EOF. The file might be corrupted.
During handling of the above exception, another exception occurred:
OSError Traceback (most recent call last)
<ipython-input-26-2fd4b689c1db> in <module>
----> 1 featify=pipeline('feature-extraction')
~/miniconda3/envs/hugging/lib/python3.7/site-packages/transformers/pipelines.py in pipeline(task, model, config, tokenizer, modelcard, **kwargs)
1084 "Trying to load the model with Tensorflow."
1085 )
-> 1086 model = model_class.from_pretrained(model, config=config, **model_kwargs)
1087
1088 return task(model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, **kwargs)
~/miniconda3/envs/hugging/lib/python3.7/site-packages/transformers/modeling_auto.py in from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
375 for config_class, model_class in MODEL_MAPPING.items():
376 if isinstance(config, config_class):
--> 377 return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
378 raise ValueError(
379 "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
~/miniconda3/envs/hugging/lib/python3.7/site-packages/transformers/modeling_utils.py in from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
468 except Exception:
469 raise OSError(
--> 470 "Unable to load weights from pytorch checkpoint file. "
471 "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
472 )
OSError: Unable to load weights from pytorch checkpoint file. If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True.
Expected behavior
Model should (download and) load.
Environment info
transformers
version: 2.4.1- Platform: WSL
- Python version: 3.7.6.final.0
- PyTorch version (GPU?): 0.4.1 (no)
- Tensorflow version (GPU?): none
- Using GPU in script?: no
- Using distributed or parallel set-up in script?: no
Metadata
Metadata
Assignees
Labels
Core: PipelineInternals of the library; Pipeline.Internals of the library; Pipeline.Ex: Named Entity Recognitionwontfix