Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 50 additions & 9 deletions tests/test_pipelines_flax.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
if is_flax_available():
import jax
import jax.numpy as jnp
from diffusers import FlaxStableDiffusionPipeline
from diffusers import FlaxDDIMScheduler, FlaxStableDiffusionPipeline
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from jax import pmap
Expand Down Expand Up @@ -61,7 +61,7 @@ def test_dummy_all_tpus(self):

assert images.shape == (8, 1, 64, 64, 3)
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 4.151474)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 49947.875)) < 1e-2
assert np.abs((np.abs(images, dtype=np.float32).sum() - 49947.875)) < 5e-1

images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))

Expand Down Expand Up @@ -93,13 +93,9 @@ def test_stable_diffusion_v1_4(self):

images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images

images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
for i, image in enumerate(images_pil):
image.save(f"/home/patrick/images/flax-test-{i}_fp32.png")

assert images.shape == (8, 1, 512, 512, 3)
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.05652401)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 1e-2
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 5e-1

def test_stable_diffusion_v1_4_bfloat_16(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
Expand Down Expand Up @@ -129,7 +125,7 @@ def test_stable_diffusion_v1_4_bfloat_16(self):

assert images.shape == (8, 1, 512, 512, 3)
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 1e-2
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1

def test_stable_diffusion_v1_4_bfloat_16_with_safety(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
Expand Down Expand Up @@ -157,4 +153,49 @@ def test_stable_diffusion_v1_4_bfloat_16_with_safety(self):

assert images.shape == (8, 1, 512, 512, 3)
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 1e-2
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1

def test_stable_diffusion_v1_4_bfloat_16_ddim(self):
scheduler = FlaxDDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
set_alpha_to_one=False,
steps_offset=1,
)

pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="bf16",
dtype=jnp.bfloat16,
scheduler=scheduler,
safety_checker=None,
)
scheduler_state = scheduler.create_state()

params["scheduler"] = scheduler_state

prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)

prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50

num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)

p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))

# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, 8)
prompt_ids = shard(prompt_ids)

images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images

assert images.shape == (8, 1, 512, 512, 3)
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.045043945)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2347693.5)) < 5e-1