Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion examples/dreambooth/train_dreambooth_lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -827,6 +827,7 @@ def main(args):
# now we will add new LoRA weights to the attention layers
unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0", "add_k_proj", "add_v_proj"],
)
Expand All @@ -835,7 +836,10 @@ def main(args):
# The text encoder comes from 🤗 transformers, we will also attach adapters to it.
if args.train_text_encoder:
text_lora_config = LoraConfig(
r=args.rank, init_lora_weights="gaussian", target_modules=["q_proj", "k_proj", "v_proj", "out_proj"]
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
)
text_encoder.add_adapter(text_lora_config)

Expand Down
10 changes: 8 additions & 2 deletions examples/dreambooth/train_dreambooth_lora_sdxl.py
Original file line number Diff line number Diff line change
Expand Up @@ -978,15 +978,21 @@ def main(args):

# now we will add new LoRA weights to the attention layers
unet_lora_config = LoraConfig(
r=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"]
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
unet.add_adapter(unet_lora_config)

# The text encoder comes from 🤗 transformers, so we cannot directly modify it.
# So, instead, we monkey-patch the forward calls of its attention-blocks.
if args.train_text_encoder:
text_lora_config = LoraConfig(
r=args.rank, init_lora_weights="gaussian", target_modules=["q_proj", "k_proj", "v_proj", "out_proj"]
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
)
text_encoder_one.add_adapter(text_lora_config)
text_encoder_two.add_adapter(text_lora_config)
Expand Down
5 changes: 4 additions & 1 deletion examples/text_to_image/train_text_to_image_lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -452,7 +452,10 @@ def main():
param.requires_grad_(False)

unet_lora_config = LoraConfig(
r=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"]
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)

# Move unet, vae and text_encoder to device and cast to weight_dtype
Expand Down
10 changes: 8 additions & 2 deletions examples/text_to_image/train_text_to_image_lora_sdxl.py
Original file line number Diff line number Diff line change
Expand Up @@ -609,7 +609,10 @@ def main(args):
# now we will add new LoRA weights to the attention layers
# Set correct lora layers
unet_lora_config = LoraConfig(
r=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"]
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)

unet.add_adapter(unet_lora_config)
Expand All @@ -618,7 +621,10 @@ def main(args):
if args.train_text_encoder:
# ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
text_lora_config = LoraConfig(
r=args.rank, init_lora_weights="gaussian", target_modules=["q_proj", "k_proj", "v_proj", "out_proj"]
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
)
text_encoder_one.add_adapter(text_lora_config)
text_encoder_two.add_adapter(text_lora_config)
Expand Down
8 changes: 6 additions & 2 deletions tests/lora/test_lora_layers_peft.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,7 @@ class PeftLoraLoaderMixinTests:

def get_dummy_components(self, scheduler_cls=None):
scheduler_cls = self.scheduler_cls if scheduler_cls is None else LCMScheduler
rank = 4

torch.manual_seed(0)
unet = UNet2DConditionModel(**self.unet_kwargs)
Expand All @@ -125,11 +126,14 @@ def get_dummy_components(self, scheduler_cls=None):
tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")

text_lora_config = LoraConfig(
r=4, lora_alpha=4, target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], init_lora_weights=False
r=rank,
lora_alpha=rank,
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
init_lora_weights=False,
)

unet_lora_config = LoraConfig(
r=4, lora_alpha=4, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False
r=rank, lora_alpha=rank, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False
)

unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
Expand Down