Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ class FlaxStableDiffusionPipeline(FlaxDiffusionPipeline):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], or [`FlaxPNDMScheduler`].
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offsensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
Expand Down Expand Up @@ -149,7 +149,6 @@ def __call__(
uncond_embeddings = self.text_encoder(uncond_input.input_ids, params=params["text_encoder"])[0]
context = jnp.concatenate([uncond_embeddings, text_embeddings])

# TODO: check it because the shape is different from Pytorhc StableDiffusionPipeline
latents_shape = (
batch_size,
self.unet.in_channels,
Expand Down Expand Up @@ -206,9 +205,9 @@ def loop_body(step, args):
# image = jnp.asarray(image).transpose(0, 2, 3, 1)
# run safety checker
# TODO: check when flax safety checker gets merged into main
# safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="np")
# safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="np")
# image, has_nsfw_concept = self.safety_checker(
# images=image, clip_input=safety_cheker_input.pixel_values, params=params["safety_params"]
# images=image, clip_input=safety_checker_input.pixel_values, params=params["safety_params"]
# )
has_nsfw_concept = False

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offsensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
Expand Down Expand Up @@ -278,8 +278,8 @@ def __call__(
image = image.cpu().permute(0, 2, 3, 1).numpy()

# run safety checker
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values)

if output_type == "pil":
image = self.numpy_to_pil(image)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ class StableDiffusionImg2ImgPipeline(DiffusionPipeline):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offsensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
Expand Down Expand Up @@ -288,8 +288,8 @@ def __call__(
image = image.cpu().permute(0, 2, 3, 1).numpy()

# run safety checker
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values)

if output_type == "pil":
image = self.numpy_to_pil(image)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ class StableDiffusionInpaintPipeline(DiffusionPipeline):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offsensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
Expand Down Expand Up @@ -328,8 +328,8 @@ def __call__(
image = image.cpu().permute(0, 2, 3, 1).numpy()

# run safety checker
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values)

if output_type == "pil":
image = self.numpy_to_pil(image)
Expand Down
24 changes: 12 additions & 12 deletions src/diffusers/pipelines/stable_diffusion/safety_checker.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,20 +48,20 @@ def forward(self, clip_input, images):
# at the cost of increasing the possibility of filtering benign images
adjustment = 0.0

for concet_idx in range(len(special_cos_dist[0])):
concept_cos = special_cos_dist[i][concet_idx]
concept_threshold = self.special_care_embeds_weights[concet_idx].item()
result_img["special_scores"][concet_idx] = round(concept_cos - concept_threshold + adjustment, 3)
if result_img["special_scores"][concet_idx] > 0:
result_img["special_care"].append({concet_idx, result_img["special_scores"][concet_idx]})
for concept_idx in range(len(special_cos_dist[0])):
concept_cos = special_cos_dist[i][concept_idx]
concept_threshold = self.special_care_embeds_weights[concept_idx].item()
result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]})
adjustment = 0.01

for concet_idx in range(len(cos_dist[0])):
concept_cos = cos_dist[i][concet_idx]
concept_threshold = self.concept_embeds_weights[concet_idx].item()
result_img["concept_scores"][concet_idx] = round(concept_cos - concept_threshold + adjustment, 3)
if result_img["concept_scores"][concet_idx] > 0:
result_img["bad_concepts"].append(concet_idx)
for concept_idx in range(len(cos_dist[0])):
concept_cos = cos_dist[i][concept_idx]
concept_threshold = self.concept_embeds_weights[concept_idx].item()
result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(concept_idx)

result.append(result_img)

Expand Down