Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 12 additions & 4 deletions tests/test_layers_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -240,7 +240,9 @@ def test_attention_block_default(self):
assert attention_scores.shape == (1, 32, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]

expected_slice = torch.tensor([-1.4975, -0.0038, -0.7847, -1.4567, 1.1220, -0.8962, -1.7394, 1.1319, -0.5427])
expected_slice = torch.tensor(
[-1.4975, -0.0038, -0.7847, -1.4567, 1.1220, -0.8962, -1.7394, 1.1319, -0.5427], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)


Expand All @@ -264,7 +266,9 @@ def test_spatial_transformer_default(self):
assert attention_scores.shape == (1, 32, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]

expected_slice = torch.tensor([-1.2447, -0.0137, -0.9559, -1.5223, 0.6991, -1.0126, -2.0974, 0.8921, -1.0201])
expected_slice = torch.tensor(
[-1.2447, -0.0137, -0.9559, -1.5223, 0.6991, -1.0126, -2.0974, 0.8921, -1.0201], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

def test_spatial_transformer_context_dim(self):
Expand All @@ -287,7 +291,9 @@ def test_spatial_transformer_context_dim(self):
assert attention_scores.shape == (1, 64, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]

expected_slice = torch.tensor([-0.2555, -0.8877, -2.4739, -2.2251, 1.2714, 0.0807, -0.4161, -1.6408, -0.0471])
expected_slice = torch.tensor(
[-0.2555, -0.8877, -2.4739, -2.2251, 1.2714, 0.0807, -0.4161, -1.6408, -0.0471], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

def test_spatial_transformer_dropout(self):
Expand All @@ -313,5 +319,7 @@ def test_spatial_transformer_dropout(self):
assert attention_scores.shape == (1, 32, 64, 64)
output_slice = attention_scores[0, -1, -3:, -3:]

expected_slice = torch.tensor([-1.2448, -0.0190, -0.9471, -1.5140, 0.7069, -1.0144, -2.1077, 0.9099, -1.0091])
expected_slice = torch.tensor(
[-1.2448, -0.0190, -0.9471, -1.5140, 0.7069, -1.0144, -2.1077, 0.9099, -1.0091], device=torch_device
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)