Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 13 additions & 13 deletions src/diffusers/models/resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -328,39 +328,39 @@ def __init__(
if self.use_nin_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

def forward(self, x, temb, hey=False):
h = x
def forward(self, x, temb):
hidden_states = x

# make sure hidden states is in float32
# when running in half-precision
h = self.norm1(h.float()).type(h.dtype)
h = self.nonlinearity(h)
hidden_states = self.norm1(hidden_states.float()).type(hidden_states.dtype)
hidden_states = self.nonlinearity(hidden_states)

if self.upsample is not None:
x = self.upsample(x)
h = self.upsample(h)
hidden_states = self.upsample(hidden_states)
elif self.downsample is not None:
x = self.downsample(x)
h = self.downsample(h)
hidden_states = self.downsample(hidden_states)

h = self.conv1(h)
hidden_states = self.conv1(hidden_states)

if temb is not None:
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
h = h + temb
hidden_states = hidden_states + temb

# make sure hidden states is in float32
# when running in half-precision
h = self.norm2(h.float()).type(h.dtype)
h = self.nonlinearity(h)
hidden_states = self.norm2(hidden_states.float()).type(hidden_states.dtype)
hidden_states = self.nonlinearity(hidden_states)

h = self.dropout(h)
h = self.conv2(h)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)

if self.conv_shortcut is not None:
x = self.conv_shortcut(x)

out = (x + h) / self.output_scale_factor
out = (x + hidden_states) / self.output_scale_factor

return out

Expand Down