-
Notifications
You must be signed in to change notification settings - Fork 6.6k
[AltDiffusion] add tests #1311
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
[AltDiffusion] add tests #1311
Changes from all commits
Commits
Show all changes
12 commits
Select commit
Hold shift + click to select a range
981c0e4
being tests
patil-suraj 0e03006
fix model ids
patil-suraj 7a93d08
don't use safety checker in tests
patil-suraj b8b75e5
add im2img2 tests
patil-suraj 84f0c07
fix integration tests
patil-suraj 0b40ec4
integration tests
patil-suraj 41f12b5
style
patil-suraj 96b5461
add sentencepiece in test dep
patil-suraj c29bb79
quality
patil-suraj 1495f30
4 decimalk points
patil-suraj 0574712
fix im2img test
patil-suraj c48433d
increase the tok slightly
patil-suraj File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,347 @@ | ||
| # coding=utf-8 | ||
| # Copyright 2022 HuggingFace Inc. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| import gc | ||
| import random | ||
| import unittest | ||
|
|
||
| import numpy as np | ||
| import torch | ||
|
|
||
| from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel | ||
| from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( | ||
| RobertaSeriesConfig, | ||
| RobertaSeriesModelWithTransformation, | ||
| ) | ||
| from diffusers.utils import floats_tensor, slow, torch_device | ||
| from diffusers.utils.testing_utils import require_torch_gpu | ||
| from transformers import XLMRobertaTokenizer | ||
|
|
||
| from ...test_pipelines_common import PipelineTesterMixin | ||
|
|
||
|
|
||
| torch.backends.cuda.matmul.allow_tf32 = False | ||
|
|
||
|
|
||
| class AltDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | ||
| def tearDown(self): | ||
| # clean up the VRAM after each test | ||
| super().tearDown() | ||
| gc.collect() | ||
| torch.cuda.empty_cache() | ||
|
|
||
| @property | ||
| def dummy_image(self): | ||
| batch_size = 1 | ||
| num_channels = 3 | ||
| sizes = (32, 32) | ||
|
|
||
| image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) | ||
| return image | ||
|
|
||
| @property | ||
| def dummy_cond_unet(self): | ||
| torch.manual_seed(0) | ||
| model = UNet2DConditionModel( | ||
| block_out_channels=(32, 64), | ||
| layers_per_block=2, | ||
| sample_size=32, | ||
| in_channels=4, | ||
| out_channels=4, | ||
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | ||
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | ||
| cross_attention_dim=32, | ||
| ) | ||
| return model | ||
|
|
||
| @property | ||
| def dummy_cond_unet_inpaint(self): | ||
| torch.manual_seed(0) | ||
| model = UNet2DConditionModel( | ||
| block_out_channels=(32, 64), | ||
| layers_per_block=2, | ||
| sample_size=32, | ||
| in_channels=9, | ||
| out_channels=4, | ||
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | ||
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | ||
| cross_attention_dim=32, | ||
| ) | ||
| return model | ||
|
|
||
| @property | ||
| def dummy_vae(self): | ||
| torch.manual_seed(0) | ||
| model = AutoencoderKL( | ||
| block_out_channels=[32, 64], | ||
| in_channels=3, | ||
| out_channels=3, | ||
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | ||
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | ||
| latent_channels=4, | ||
| ) | ||
| return model | ||
|
|
||
| @property | ||
| def dummy_text_encoder(self): | ||
| torch.manual_seed(0) | ||
| config = RobertaSeriesConfig( | ||
| hidden_size=32, | ||
| project_dim=32, | ||
| intermediate_size=37, | ||
| layer_norm_eps=1e-05, | ||
| num_attention_heads=4, | ||
| num_hidden_layers=5, | ||
| vocab_size=5002, | ||
| ) | ||
| return RobertaSeriesModelWithTransformation(config) | ||
|
|
||
| @property | ||
| def dummy_extractor(self): | ||
| def extract(*args, **kwargs): | ||
| class Out: | ||
| def __init__(self): | ||
| self.pixel_values = torch.ones([0]) | ||
|
|
||
| def to(self, device): | ||
| self.pixel_values.to(device) | ||
| return self | ||
|
|
||
| return Out() | ||
|
|
||
| return extract | ||
|
|
||
| def test_alt_diffusion_ddim(self): | ||
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | ||
| unet = self.dummy_cond_unet | ||
| scheduler = DDIMScheduler( | ||
| beta_start=0.00085, | ||
| beta_end=0.012, | ||
| beta_schedule="scaled_linear", | ||
| clip_sample=False, | ||
| set_alpha_to_one=False, | ||
| ) | ||
|
|
||
| vae = self.dummy_vae | ||
| bert = self.dummy_text_encoder | ||
| tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") | ||
| tokenizer.model_max_length = 77 | ||
|
|
||
| # make sure here that pndm scheduler skips prk | ||
| alt_pipe = AltDiffusionPipeline( | ||
| unet=unet, | ||
| scheduler=scheduler, | ||
| vae=vae, | ||
| text_encoder=bert, | ||
| tokenizer=tokenizer, | ||
| safety_checker=None, | ||
| feature_extractor=self.dummy_extractor, | ||
| ) | ||
| alt_pipe = alt_pipe.to(device) | ||
| alt_pipe.set_progress_bar_config(disable=None) | ||
|
|
||
| prompt = "A photo of an astronaut" | ||
|
|
||
| generator = torch.Generator(device=device).manual_seed(0) | ||
| output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") | ||
| image = output.images | ||
|
|
||
| generator = torch.Generator(device=device).manual_seed(0) | ||
| image_from_tuple = alt_pipe( | ||
| [prompt], | ||
| generator=generator, | ||
| guidance_scale=6.0, | ||
| num_inference_steps=2, | ||
| output_type="np", | ||
| return_dict=False, | ||
| )[0] | ||
|
|
||
| image_slice = image[0, -3:, -3:, -1] | ||
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | ||
|
|
||
| assert image.shape == (1, 128, 128, 3) | ||
| expected_slice = np.array( | ||
| [0.49249017, 0.46064827, 0.4790093, 0.50883967, 0.4811985, 0.51540506, 0.5084924, 0.4860553, 0.47318557] | ||
| ) | ||
|
|
||
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | ||
| assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | ||
|
|
||
| def test_alt_diffusion_pndm(self): | ||
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | ||
| unet = self.dummy_cond_unet | ||
| scheduler = PNDMScheduler(skip_prk_steps=True) | ||
| vae = self.dummy_vae | ||
| bert = self.dummy_text_encoder | ||
| tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") | ||
| tokenizer.model_max_length = 77 | ||
|
|
||
| # make sure here that pndm scheduler skips prk | ||
| alt_pipe = AltDiffusionPipeline( | ||
| unet=unet, | ||
| scheduler=scheduler, | ||
| vae=vae, | ||
| text_encoder=bert, | ||
| tokenizer=tokenizer, | ||
| safety_checker=None, | ||
| feature_extractor=self.dummy_extractor, | ||
| ) | ||
| alt_pipe = alt_pipe.to(device) | ||
| alt_pipe.set_progress_bar_config(disable=None) | ||
|
|
||
| prompt = "A painting of a squirrel eating a burger" | ||
| generator = torch.Generator(device=device).manual_seed(0) | ||
| output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") | ||
|
|
||
| image = output.images | ||
|
|
||
| generator = torch.Generator(device=device).manual_seed(0) | ||
| image_from_tuple = alt_pipe( | ||
| [prompt], | ||
| generator=generator, | ||
| guidance_scale=6.0, | ||
| num_inference_steps=2, | ||
| output_type="np", | ||
| return_dict=False, | ||
| )[0] | ||
|
|
||
| image_slice = image[0, -3:, -3:, -1] | ||
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | ||
|
|
||
| assert image.shape == (1, 128, 128, 3) | ||
| expected_slice = np.array( | ||
| [0.4786532, 0.45791715, 0.47507674, 0.50763345, 0.48375353, 0.515062, 0.51244247, 0.48673993, 0.47105807] | ||
| ) | ||
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | ||
| assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | ||
|
|
||
| @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") | ||
| def test_alt_diffusion_fp16(self): | ||
| """Test that stable diffusion works with fp16""" | ||
| unet = self.dummy_cond_unet | ||
| scheduler = PNDMScheduler(skip_prk_steps=True) | ||
| vae = self.dummy_vae | ||
| bert = self.dummy_text_encoder | ||
| tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") | ||
| tokenizer.model_max_length = 77 | ||
|
|
||
| # put models in fp16 | ||
| unet = unet.half() | ||
| vae = vae.half() | ||
| bert = bert.half() | ||
|
|
||
| # make sure here that pndm scheduler skips prk | ||
| alt_pipe = AltDiffusionPipeline( | ||
| unet=unet, | ||
| scheduler=scheduler, | ||
| vae=vae, | ||
| text_encoder=bert, | ||
| tokenizer=tokenizer, | ||
| safety_checker=None, | ||
| feature_extractor=self.dummy_extractor, | ||
| ) | ||
| alt_pipe = alt_pipe.to(torch_device) | ||
| alt_pipe.set_progress_bar_config(disable=None) | ||
|
|
||
| prompt = "A painting of a squirrel eating a burger" | ||
| generator = torch.Generator(device=torch_device).manual_seed(0) | ||
| image = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images | ||
|
|
||
| assert image.shape == (1, 128, 128, 3) | ||
|
|
||
|
|
||
| @slow | ||
| @require_torch_gpu | ||
| class AltDiffusionPipelineIntegrationTests(unittest.TestCase): | ||
| def tearDown(self): | ||
| # clean up the VRAM after each test | ||
| super().tearDown() | ||
| gc.collect() | ||
| torch.cuda.empty_cache() | ||
|
|
||
| def test_alt_diffusion(self): | ||
| # make sure here that pndm scheduler skips prk | ||
| alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None) | ||
| alt_pipe = alt_pipe.to(torch_device) | ||
| alt_pipe.set_progress_bar_config(disable=None) | ||
|
|
||
| prompt = "A painting of a squirrel eating a burger" | ||
| generator = torch.Generator(device=torch_device).manual_seed(0) | ||
| with torch.autocast("cuda"): | ||
| output = alt_pipe( | ||
| [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np" | ||
| ) | ||
|
|
||
| image = output.images | ||
|
|
||
| image_slice = image[0, -3:, -3:, -1] | ||
|
|
||
| assert image.shape == (1, 512, 512, 3) | ||
| expected_slice = np.array( | ||
| [0.8720703, 0.87109375, 0.87402344, 0.87109375, 0.8779297, 0.8925781, 0.8823242, 0.8808594, 0.8613281] | ||
| ) | ||
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | ||
|
|
||
| def test_alt_diffusion_fast_ddim(self): | ||
| scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler") | ||
|
|
||
| alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None) | ||
| alt_pipe = alt_pipe.to(torch_device) | ||
| alt_pipe.set_progress_bar_config(disable=None) | ||
|
|
||
| prompt = "A painting of a squirrel eating a burger" | ||
| generator = torch.Generator(device=torch_device).manual_seed(0) | ||
|
|
||
| with torch.autocast("cuda"): | ||
| output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy") | ||
| image = output.images | ||
|
|
||
| image_slice = image[0, -3:, -3:, -1] | ||
|
|
||
| assert image.shape == (1, 512, 512, 3) | ||
| expected_slice = np.array( | ||
| [0.9267578, 0.9301758, 0.9013672, 0.9345703, 0.92578125, 0.94433594, 0.9423828, 0.9423828, 0.9160156] | ||
| ) | ||
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | ||
|
|
||
| def test_alt_diffusion_text2img_pipeline_fp16(self): | ||
| torch.cuda.reset_peak_memory_stats() | ||
| model_id = "BAAI/AltDiffusion" | ||
| pipe = AltDiffusionPipeline.from_pretrained( | ||
| model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None | ||
| ) | ||
| pipe = pipe.to(torch_device) | ||
| pipe.set_progress_bar_config(disable=None) | ||
|
|
||
| prompt = "a photograph of an astronaut riding a horse" | ||
|
|
||
| generator = torch.Generator(device=torch_device).manual_seed(0) | ||
| output_chunked = pipe( | ||
| [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy" | ||
| ) | ||
| image_chunked = output_chunked.images | ||
|
|
||
| generator = torch.Generator(device=torch_device).manual_seed(0) | ||
| with torch.autocast(torch_device): | ||
| output = pipe( | ||
| [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy" | ||
| ) | ||
| image = output.images | ||
|
|
||
| # Make sure results are close enough | ||
| diff = np.abs(image_chunked.flatten() - image.flatten()) | ||
| # They ARE different since ops are not run always at the same precision | ||
| # however, they should be extremely close. | ||
| assert diff.mean() < 2e-2 |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks!