Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 34 additions & 16 deletions src/diffusers/models/embeddings_flax.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,23 +17,41 @@
import jax.numpy as jnp


# This is like models.embeddings.get_timestep_embedding (PyTorch) but
# less general (only handles the case we currently need).
def get_sinusoidal_embeddings(timesteps, embedding_dim, freq_shift: float = 1):
def get_sinusoidal_embeddings(
timesteps: jnp.ndarray,
embedding_dim: int,
freq_shift: float = 1,
min_timescale: float = 1,
max_timescale: float = 1.0e4,
flip_sin_to_cos: bool = False,
scale: float = 1.0,
) -> jnp.ndarray:
"""Returns the positional encoding (same as Tensor2Tensor).
Args:
timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
embedding_dim: The number of output channels.
min_timescale: The smallest time unit (should probably be 0.0).
max_timescale: The largest time unit.
Returns:
a Tensor of timing signals [N, num_channels]
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, f"Embedding dimension {embedding_dim} should be even"
num_timescales = float(embedding_dim // 2)
log_timescale_increment = math.log(max_timescale / min_timescale) / (num_timescales - freq_shift)
inv_timescales = min_timescale * jnp.exp(jnp.arange(num_timescales, dtype=jnp.float32) * -log_timescale_increment)
emb = jnp.expand_dims(timesteps, 1) * jnp.expand_dims(inv_timescales, 0)

:param timesteps: a 1-D tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] tensor of positional embeddings.
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - freq_shift)
emb = jnp.exp(jnp.arange(half_dim) * -emb)
emb = timesteps[:, None] * emb[None, :]
emb = jnp.concatenate([jnp.cos(emb), jnp.sin(emb)], -1)
return emb
# scale embeddings
scaled_time = scale * emb

if flip_sin_to_cos:
signal = jnp.concatenate([jnp.cos(scaled_time), jnp.sin(scaled_time)], axis=1)
else:
signal = jnp.concatenate([jnp.sin(scaled_time), jnp.cos(scaled_time)], axis=1)
signal = jnp.reshape(signal, [jnp.shape(timesteps)[0], embedding_dim])
return signal


class FlaxTimestepEmbedding(nn.Module):
Expand Down Expand Up @@ -70,4 +88,4 @@ class FlaxTimesteps(nn.Module):

@nn.compact
def __call__(self, timesteps):
return get_sinusoidal_embeddings(timesteps, self.dim, freq_shift=self.freq_shift)
return get_sinusoidal_embeddings(timesteps, embedding_dim=self.dim, freq_shift=self.freq_shift)