-
Notifications
You must be signed in to change notification settings - Fork 125
Description
This test failed!
To configure my behavior, see the Flaky Bot documentation.
If I'm commenting on this issue too often, add the flakybot: quiet
label and
I will stop commenting.
commit: ae6ad6b
buildURL: Build Status, Sponge
status: failed
Test output
dataframe = test_col test_col2 0 1.428571e-01 1.428571e-01 1 4.406780e-01 4.406780e-01 2 1.051480e+00 1.051480e+0...4 1.857143e+00 1.857143e+00 5 2.718282e+00 2.718282e+00 6 3.141593e+00 3.141593e+00 7 2.098894e+43 2.098894e+43 destination_table = 'python_bigquery_pandas_tests_system_20220319131718_dafd1b.round_trip_829808' project_id = 'precise-truck-742', chunksize = None, reauth = False if_exists = 'fail', auth_local_webserver = True table_schema = {'fields': [{'name': 'test_col', 'type': 'FLOAT'}, {'name': 'test_col2', 'type': 'FLOAT'}]} location = None, progress_bar = True credentials = api_method = 'load_parquet', verbose = None, private_key = Nonedef to_gbq( dataframe, destination_table, project_id=None, chunksize=None, reauth=False, if_exists="fail", auth_local_webserver=True, table_schema=None, location=None, progress_bar=True, credentials=None, api_method: str = "default", verbose=None, private_key=None, ): """Write a DataFrame to a Google BigQuery table. The main method a user calls to export pandas DataFrame contents to Google BigQuery table. This method uses the Google Cloud client library to make requests to Google BigQuery, documented `here <https://googleapis.dev/python/bigquery/latest/index.html>`__. See the :ref:`How to authenticate with Google BigQuery <authentication>` guide for authentication instructions. Parameters ---------- dataframe : pandas.DataFrame DataFrame to be written to a Google BigQuery table. destination_table : str Name of table to be written, in the form ``dataset.tablename`` or ``project.dataset.tablename``. project_id : str, optional Google Cloud Platform project ID. Optional when available from the environment. chunksize : int, optional Number of rows to be inserted in each chunk from the dataframe. Set to ``None`` to load the whole dataframe at once. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. if_exists : str, default 'fail' Behavior when the destination table exists. Value can be one of: ``'fail'`` If table exists, do nothing. ``'replace'`` If table exists, drop it, recreate it, and insert data. ``'append'`` If table exists, insert data. Create if does not exist. auth_local_webserver : bool, default True Use the `local webserver flow <https://googleapis.dev/python/google-auth-oauthlib/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server>`_ instead of the `console flow <https://googleapis.dev/python/google-auth-oauthlib/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console>`_ when getting user credentials. Your code must run on the same machine as your web browser and your web browser can access your application via ``localhost:808X``. .. versionadded:: 0.2.0 table_schema : list of dicts, optional List of BigQuery table fields to which according DataFrame columns conform to, e.g. ``[{'name': 'col1', 'type': 'STRING'},...]``. The ``type`` values must be BigQuery type names. - If ``table_schema`` is provided, it may contain all or a subset of DataFrame columns. If a subset is provided, the rest will be inferred from the DataFrame dtypes. If ``table_schema`` contains columns not in the DataFrame, they'll be ignored. - If ``table_schema`` is **not** provided, it will be generated according to dtypes of DataFrame columns. See `Inferring the Table Schema <https://pandas-gbq.readthedocs.io/en/latest/writing.html#writing-schema>`__. for a description of the schema inference. See `BigQuery API documentation on valid column names <https://cloud.google.com/bigquery/docs/schemas#column_names`>__. .. versionadded:: 0.3.1 location : str, optional Location where the load job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of the target dataset. .. versionadded:: 0.5.0 progress_bar : bool, default True Use the library `tqdm` to show the progress bar for the upload, chunk by chunk. .. versionadded:: 0.5.0 credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. .. versionadded:: 0.8.0 api_method : str, optional API method used to upload DataFrame to BigQuery. One of "load_parquet", "load_csv". Default "load_parquet" if pandas is version 1.1.0+, otherwise "load_csv". .. versionadded:: 0.16.0 verbose : bool, deprecated Deprecated in Pandas-GBQ 0.4.0. Use the `logging module to adjust verbosity instead <https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__. private_key : str, deprecated Deprecated in pandas-gbq version 0.8.0. Use the ``credentials`` parameter and :func:`google.oauth2.service_account.Credentials.from_service_account_info` or :func:`google.oauth2.service_account.Credentials.from_service_account_file` instead. """ _test_google_api_imports() from google.api_core import exceptions as google_exceptions from google.cloud import bigquery if verbose is not None and FEATURES.pandas_has_deprecated_verbose: warnings.warn( "verbose is deprecated and will be removed in " "a future version. Set logging level in order to vary " "verbosity", FutureWarning, stacklevel=1, ) if api_method == "default": # Avoid using parquet if pandas doesn't support lossless conversions to # parquet timestamp. See: https://stackoverflow.com/a/69758676/101923 if FEATURES.pandas_has_parquet_with_lossless_timestamp: api_method = "load_parquet" else: api_method = "load_csv" if chunksize is not None: if api_method == "load_parquet": warnings.warn( "chunksize is ignored when using api_method='load_parquet'", DeprecationWarning, stacklevel=2, ) else: warnings.warn( "chunksize will be ignored when using api_method='load_csv' in a future version of pandas-gbq", PendingDeprecationWarning, stacklevel=2, ) if if_exists not in ("fail", "replace", "append"): raise ValueError("'{0}' is not valid for if_exists".format(if_exists)) if "." not in destination_table: raise NotFoundException( "Invalid Table Name. Should be of the form 'datasetId.tableId' or " "'projectId.datasetId.tableId'" ) connector = GbqConnector( project_id, reauth=reauth, auth_local_webserver=auth_local_webserver, location=location, credentials=credentials, private_key=private_key, ) bqclient = connector.client destination_table_ref = bigquery.table.TableReference.from_string( destination_table, default_project=connector.project_id ) project_id_table = destination_table_ref.project dataset_id = destination_table_ref.dataset_id table_id = destination_table_ref.table_id default_schema = _generate_bq_schema(dataframe) if not table_schema: table_schema = default_schema else: table_schema = pandas_gbq.schema.update_schema( default_schema, dict(fields=table_schema) ) # If table exists, check if_exists parameter try:
table = bqclient.get_table(destination_table_ref)
pandas_gbq/gbq.py:1149:
self = <google.cloud.bigquery.client.Client object at 0x7fdecd68df10>
table = TableReference(DatasetReference('precise-truck-742', 'python_bigquery_pandas_tests_system_20220319131718_dafd1b'), 'round_trip_829808')
retry = <google.api_core.retry.Retry object at 0x7fded448b1c0>, timeout = Nonedef get_table( self, table: Union[Table, TableReference, TableListItem, str], retry: retries.Retry = DEFAULT_RETRY, timeout: TimeoutType = DEFAULT_TIMEOUT, ) -> Table: """Fetch the table referenced by ``table``. Args: table (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ google.cloud.bigquery.table.TableListItem, \ str, \ ]): A reference to the table to fetch from the BigQuery API. If a string is passed in, this method attempts to create a table reference from a string using :func:`google.cloud.bigquery.table.TableReference.from_string`. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.table.Table: A ``Table`` instance. """ table_ref = _table_arg_to_table_ref(table, default_project=self.project) path = table_ref.path span_attributes = {"path": path}
api_response = self._call_api(
retry, span_name="BigQuery.getTable", span_attributes=span_attributes, method="GET", path=path, timeout=timeout, )
.nox/system-3-9/lib/python3.9/site-packages/google/cloud/bigquery/client.py:1034:
self = <google.cloud.bigquery.client.Client object at 0x7fdecd68df10>
retry = <google.api_core.retry.Retry object at 0x7fded448b1c0>
span_name = 'BigQuery.getTable'
span_attributes = {'path': '/projects/precise-truck-742/datasets/python_bigquery_pandas_tests_system_20220319131718_dafd1b/tables/round_trip_829808'}
job_ref = None, headers = None
kwargs = {'method': 'GET', 'path': '/projects/precise-truck-742/datasets/python_bigquery_pandas_tests_system_20220319131718_dafd1b/tables/round_trip_829808', 'timeout': None}
call = <function Retry.call..retry_wrapped_func at 0x7fdecd65b790>def _call_api( self, retry, span_name=None, span_attributes=None, job_ref=None, headers: Optional[Dict[str, str]] = None, **kwargs, ): kwargs = _add_server_timeout_header(headers, kwargs) call = functools.partial(self._connection.api_request, **kwargs) if retry: call = retry(call) if span_name is not None: with create_span( name=span_name, attributes=span_attributes, client=self, job_ref=job_ref ):
return call()
.nox/system-3-9/lib/python3.9/site-packages/google/cloud/bigquery/client.py:782:
args = (), kwargs = {}
target = functools.partial(functools.partial(<bound method JSONConnection.api_request of <google.cloud.bigquery._http.Connectio...-truck-742/datasets/python_bigquery_pandas_tests_system_20220319131718_dafd1b/tables/round_trip_829808', timeout=None))
sleep_generator = <generator object exponential_sleep_generator at 0x7fdecfd59820>@functools.wraps(func) def retry_wrapped_func(*args, **kwargs): """A wrapper that calls target function with retry.""" target = functools.partial(func, *args, **kwargs) sleep_generator = exponential_sleep_generator( self._initial, self._maximum, multiplier=self._multiplier )
return retry_target(
target, self._predicate, sleep_generator, self._deadline, on_error=on_error, )
.nox/system-3-9/lib/python3.9/site-packages/google/api_core/retry.py:283:
target = functools.partial(functools.partial(<bound method JSONConnection.api_request of <google.cloud.bigquery._http.Connectio...-truck-742/datasets/python_bigquery_pandas_tests_system_20220319131718_dafd1b/tables/round_trip_829808', timeout=None))
predicate = <function _should_retry at 0x7fded4487670>
sleep_generator = <generator object exponential_sleep_generator at 0x7fdecfd59820>
deadline = 600.0, on_error = Nonedef retry_target(target, predicate, sleep_generator, deadline, on_error=None): """Call a function and retry if it fails. This is the lowest-level retry helper. Generally, you'll use the higher-level retry helper :class:`Retry`. Args: target(Callable): The function to call and retry. This must be a nullary function - apply arguments with `functools.partial`. predicate (Callable[Exception]): A callable used to determine if an exception raised by the target should be considered retryable. It should return True to retry or False otherwise. sleep_generator (Iterable[float]): An infinite iterator that determines how long to sleep between retries. deadline (float): How long to keep retrying the target. The last sleep period is shortened as necessary, so that the last retry runs at ``deadline`` (and not considerably beyond it). on_error (Callable[Exception]): A function to call while processing a retryable exception. Any error raised by this function will *not* be caught. Returns: Any: the return value of the target function. Raises: google.api_core.RetryError: If the deadline is exceeded while retrying. ValueError: If the sleep generator stops yielding values. Exception: If the target raises a method that isn't retryable. """ if deadline is not None: deadline_datetime = datetime_helpers.utcnow() + datetime.timedelta( seconds=deadline ) else: deadline_datetime = None last_exc = None for sleep in sleep_generator: try:
return target()
.nox/system-3-9/lib/python3.9/site-packages/google/api_core/retry.py:190:
self = <google.cloud.bigquery._http.Connection object at 0x7fdecd68d5e0>
method = 'GET'
path = '/projects/precise-truck-742/datasets/python_bigquery_pandas_tests_system_20220319131718_dafd1b/tables/round_trip_829808'
query_params = None, data = None, content_type = None, headers = None
api_base_url = None, api_version = None, expect_json = True
_target_object = None, timeout = Nonedef api_request( self, method, path, query_params=None, data=None, content_type=None, headers=None, api_base_url=None, api_version=None, expect_json=True, _target_object=None, timeout=_DEFAULT_TIMEOUT, ): """Make a request over the HTTP transport to the API. You shouldn't need to use this method, but if you plan to interact with the API using these primitives, this is the correct one to use. :type method: str :param method: The HTTP method name (ie, ``GET``, ``POST``, etc). Required. :type path: str :param path: The path to the resource (ie, ``'/b/bucket-name'``). Required. :type query_params: dict or list :param query_params: A dictionary of keys and values (or list of key-value pairs) to insert into the query string of the URL. :type data: str :param data: The data to send as the body of the request. Default is the empty string. :type content_type: str :param content_type: The proper MIME type of the data provided. Default is None. :type headers: dict :param headers: extra HTTP headers to be sent with the request. :type api_base_url: str :param api_base_url: The base URL for the API endpoint. Typically you won't have to provide this. Default is the standard API base URL. :type api_version: str :param api_version: The version of the API to call. Typically you shouldn't provide this and instead use the default for the library. Default is the latest API version supported by google-cloud-python. :type expect_json: bool :param expect_json: If True, this method will try to parse the response as JSON and raise an exception if that cannot be done. Default is True. :type _target_object: :class:`object` :param _target_object: (Optional) Protected argument to be used by library callers. This can allow custom behavior, for example, to defer an HTTP request and complete initialization of the object at a later time. :type timeout: float or tuple :param timeout: (optional) The amount of time, in seconds, to wait for the server response. Can also be passed as a tuple (connect_timeout, read_timeout). See :meth:`requests.Session.request` documentation for details. :raises ~google.cloud.exceptions.GoogleCloudError: if the response code is not 200 OK. :raises ValueError: if the response content type is not JSON. :rtype: dict or str :returns: The API response payload, either as a raw string or a dictionary if the response is valid JSON. """ url = self.build_api_url( path=path, query_params=query_params, api_base_url=api_base_url, api_version=api_version, ) # Making the executive decision that any dictionary # data will be sent properly as JSON. if data and isinstance(data, dict): data = json.dumps(data) content_type = "application/json" response = self._make_request( method=method, url=url, data=data, content_type=content_type, headers=headers, target_object=_target_object, timeout=timeout, ) if not 200 <= response.status_code < 300:
raise exceptions.from_http_response(response)
E google.api_core.exceptions.NotFound: 404 GET https://bigquery.googleapis.com/bigquery/v2/projects/precise-truck-742/datasets/python_bigquery_pandas_tests_system_20220319131718_dafd1b/tables/round_trip_829808?prettyPrint=false: Not found: Dataset precise-truck-742:python_bigquery_pandas_tests_system_20220319131718_dafd1b
.nox/system-3-9/lib/python3.9/site-packages/google/cloud/_http/init.py:480: NotFound
During handling of the above exception, another exception occurred:
self = <pandas_gbq.gbq._Table object at 0x7fdecd68d8e0>
table_id = 'round_trip_829808'
schema = {'fields': [{'name': 'test_col', 'type': 'FLOAT'}, {'name': 'test_col2', 'type': 'FLOAT'}]}def create(self, table_id, schema): """Create a table in Google BigQuery given a table and schema Parameters ---------- table : str Name of table to be written schema : str Use the generate_bq_schema to generate your table schema from a dataframe. """ from google.cloud.bigquery import DatasetReference from google.cloud.bigquery import Table from google.cloud.bigquery import TableReference if self.exists(table_id): raise TableCreationError("Table {0} already exists".format(table_id)) if not _Dataset(self.project_id, credentials=self.credentials).exists( self.dataset_id ): _Dataset( self.project_id, credentials=self.credentials, location=self.location, ).create(self.dataset_id) table_ref = TableReference( DatasetReference(self.project_id, self.dataset_id), table_id ) table = Table(table_ref) table.schema = pandas_gbq.schema.to_google_cloud_bigquery(schema) try:
self.client.create_table(table)
pandas_gbq/gbq.py:1322:
self = <google.cloud.bigquery.client.Client object at 0x7fdecd6303d0>
table = Table(TableReference(DatasetReference('precise-truck-742', 'python_bigquery_pandas_tests_system_20220319131718_dafd1b'), 'round_trip_829808'))
exists_ok = False
retry = <google.api_core.retry.Retry object at 0x7fded448b1c0>, timeout = Nonedef create_table( self, table: Union[str, Table, TableReference, TableListItem], exists_ok: bool = False, retry: retries.Retry = DEFAULT_RETRY, timeout: TimeoutType = DEFAULT_TIMEOUT, ) -> Table: """API call: create a table via a PUT request See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/insert Args: table (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ google.cloud.bigquery.table.TableListItem, \ str, \ ]): A :class:`~google.cloud.bigquery.table.Table` to create. If ``table`` is a reference, an empty table is created with the specified ID. The dataset that the table belongs to must already exist. exists_ok (Optional[bool]): Defaults to ``False``. If ``True``, ignore "already exists" errors when creating the table. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.table.Table: A new ``Table`` returned from the service. Raises: google.cloud.exceptions.Conflict: If the table already exists. """ table = _table_arg_to_table(table, default_project=self.project) dataset_id = table.dataset_id path = "/projects/%s/datasets/%s/tables" % (table.project, dataset_id) data = table.to_api_repr() try: span_attributes = {"path": path, "dataset_id": dataset_id}
api_response = self._call_api(
retry, span_name="BigQuery.createTable", span_attributes=span_attributes, method="POST", path=path, data=data, timeout=timeout, )
.nox/system-3-9/lib/python3.9/site-packages/google/cloud/bigquery/client.py:748:
self = <google.cloud.bigquery.client.Client object at 0x7fdecd6303d0>
retry = <google.api_core.retry.Retry object at 0x7fded448b1c0>
span_name = 'BigQuery.createTable'
span_attributes = {'dataset_id': 'python_bigquery_pandas_tests_system_20220319131718_dafd1b', 'path': '/projects/precise-truck-742/datasets/python_bigquery_pandas_tests_system_20220319131718_dafd1b/tables'}
job_ref = None, headers = None
kwargs = {'data': {'labels': {}, 'schema': {'fields': [{'mode': 'NULLABLE', 'name': 'test_col', 'type': 'FLOAT'}, {'mode': 'NUL...projects/precise-truck-742/datasets/python_bigquery_pandas_tests_system_20220319131718_dafd1b/tables', 'timeout': None}
call = <function Retry.call..retry_wrapped_func at 0x7fdecece7ca0>def _call_api( self, retry, span_name=None, span_attributes=None, job_ref=None, headers: Optional[Dict[str, str]] = None, **kwargs, ): kwargs = _add_server_timeout_header(headers, kwargs) call = functools.partial(self._connection.api_request, **kwargs) if retry: call = retry(call) if span_name is not None: with create_span( name=span_name, attributes=span_attributes, client=self, job_ref=job_ref ):
return call()
.nox/system-3-9/lib/python3.9/site-packages/google/cloud/bigquery/client.py:782:
args = (), kwargs = {}
target = functools.partial(functools.partial(<bound method JSONConnection.api_request of <google.cloud.bigquery._http.Connectio...l', 'type': 'FLOAT', 'mode': 'NULLABLE'}, {'name': 'test_col2', 'type': 'FLOAT', 'mode': 'NULLABLE'}]}}, timeout=None))
sleep_generator = <generator object exponential_sleep_generator at 0x7fdea6d87040>@functools.wraps(func) def retry_wrapped_func(*args, **kwargs): """A wrapper that calls target function with retry.""" target = functools.partial(func, *args, **kwargs) sleep_generator = exponential_sleep_generator( self._initial, self._maximum, multiplier=self._multiplier )
return retry_target(
target, self._predicate, sleep_generator, self._deadline, on_error=on_error, )
.nox/system-3-9/lib/python3.9/site-packages/google/api_core/retry.py:283:
target = functools.partial(functools.partial(<bound method JSONConnection.api_request of <google.cloud.bigquery._http.Connectio...l', 'type': 'FLOAT', 'mode': 'NULLABLE'}, {'name': 'test_col2', 'type': 'FLOAT', 'mode': 'NULLABLE'}]}}, timeout=None))
predicate = <function _should_retry at 0x7fded4487670>
sleep_generator = <generator object exponential_sleep_generator at 0x7fdea6d87040>
deadline = 600.0, on_error = Nonedef retry_target(target, predicate, sleep_generator, deadline, on_error=None): """Call a function and retry if it fails. This is the lowest-level retry helper. Generally, you'll use the higher-level retry helper :class:`Retry`. Args: target(Callable): The function to call and retry. This must be a nullary function - apply arguments with `functools.partial`. predicate (Callable[Exception]): A callable used to determine if an exception raised by the target should be considered retryable. It should return True to retry or False otherwise. sleep_generator (Iterable[float]): An infinite iterator that determines how long to sleep between retries. deadline (float): How long to keep retrying the target. The last sleep period is shortened as necessary, so that the last retry runs at ``deadline`` (and not considerably beyond it). on_error (Callable[Exception]): A function to call while processing a retryable exception. Any error raised by this function will *not* be caught. Returns: Any: the return value of the target function. Raises: google.api_core.RetryError: If the deadline is exceeded while retrying. ValueError: If the sleep generator stops yielding values. Exception: If the target raises a method that isn't retryable. """ if deadline is not None: deadline_datetime = datetime_helpers.utcnow() + datetime.timedelta( seconds=deadline ) else: deadline_datetime = None last_exc = None for sleep in sleep_generator: try:
return target()
.nox/system-3-9/lib/python3.9/site-packages/google/api_core/retry.py:190:
self = <google.cloud.bigquery._http.Connection object at 0x7fdecd630cd0>
method = 'POST'
path = '/projects/precise-truck-742/datasets/python_bigquery_pandas_tests_system_20220319131718_dafd1b/tables'
query_params = None
data = '{"tableReference": {"projectId": "precise-truck-742", "datasetId": "python_bigquery_pandas_tests_system_2022031913171...name": "test_col", "type": "FLOAT", "mode": "NULLABLE"}, {"name": "test_col2", "type": "FLOAT", "mode": "NULLABLE"}]}}'
content_type = 'application/json', headers = None, api_base_url = None
api_version = None, expect_json = True, _target_object = None, timeout = Nonedef api_request( self, method, path, query_params=None, data=None, content_type=None, headers=None, api_base_url=None, api_version=None, expect_json=True, _target_object=None, timeout=_DEFAULT_TIMEOUT, ): """Make a request over the HTTP transport to the API. You shouldn't need to use this method, but if you plan to interact with the API using these primitives, this is the correct one to use. :type method: str :param method: The HTTP method name (ie, ``GET``, ``POST``, etc). Required. :type path: str :param path: The path to the resource (ie, ``'/b/bucket-name'``). Required. :type query_params: dict or list :param query_params: A dictionary of keys and values (or list of key-value pairs) to insert into the query string of the URL. :type data: str :param data: The data to send as the body of the request. Default is the empty string. :type content_type: str :param content_type: The proper MIME type of the data provided. Default is None. :type headers: dict :param headers: extra HTTP headers to be sent with the request. :type api_base_url: str :param api_base_url: The base URL for the API endpoint. Typically you won't have to provide this. Default is the standard API base URL. :type api_version: str :param api_version: The version of the API to call. Typically you shouldn't provide this and instead use the default for the library. Default is the latest API version supported by google-cloud-python. :type expect_json: bool :param expect_json: If True, this method will try to parse the response as JSON and raise an exception if that cannot be done. Default is True. :type _target_object: :class:`object` :param _target_object: (Optional) Protected argument to be used by library callers. This can allow custom behavior, for example, to defer an HTTP request and complete initialization of the object at a later time. :type timeout: float or tuple :param timeout: (optional) The amount of time, in seconds, to wait for the server response. Can also be passed as a tuple (connect_timeout, read_timeout). See :meth:`requests.Session.request` documentation for details. :raises ~google.cloud.exceptions.GoogleCloudError: if the response code is not 200 OK. :raises ValueError: if the response content type is not JSON. :rtype: dict or str :returns: The API response payload, either as a raw string or a dictionary if the response is valid JSON. """ url = self.build_api_url( path=path, query_params=query_params, api_base_url=api_base_url, api_version=api_version, ) # Making the executive decision that any dictionary # data will be sent properly as JSON. if data and isinstance(data, dict): data = json.dumps(data) content_type = "application/json" response = self._make_request( method=method, url=url, data=data, content_type=content_type, headers=headers, target_object=_target_object, timeout=timeout, ) if not 200 <= response.status_code < 300:
raise exceptions.from_http_response(response)
E google.api_core.exceptions.Forbidden: 403 POST https://bigquery.googleapis.com/bigquery/v2/projects/precise-truck-742/datasets/python_bigquery_pandas_tests_system_20220319131718_dafd1b/tables?prettyPrint=false: Access Denied: Dataset precise-truck-742:python_bigquery_pandas_tests_system_20220319131718_dafd1b: Permission bigquery.tables.create denied on dataset precise-truck-742:python_bigquery_pandas_tests_system_20220319131718_dafd1b (or it may not exist).
.nox/system-3-9/lib/python3.9/site-packages/google/cloud/_http/init.py:480: Forbidden
During handling of the above exception, another exception occurred:
method_under_test = functools.partial(<function to_gbq at 0x7fded4301040>, project_id='precise-truck-742', credentials=<google.oauth2.service_account.Credentials object at 0x7fded41a7d60>)
random_dataset_id = 'python_bigquery_pandas_tests_system_20220319131718_dafd1b'
read_gbq = functools.partial(<function read_gbq at 0x7fded437cf70>, project_id='precise-truck-742', credentials=<google.oauth2.service_account.Credentials object at 0x7fded41a7d60>)
input_series = 0 1.428571e-01
1 4.406780e-01
2 1.051480e+00
3 1.051530e+00
4 1.857143e+00
5 2.718282e+00
6 3.141593e+00
7 2.098894e+43
Name: test_col, dtype: float64
api_method = 'load_parquet', api_methods = {'load_csv', 'load_parquet'}@pytest.mark.parametrize( ["input_series", "api_methods"], [ # Ensure that 64-bit floating point numbers are unchanged. # See: https://github.com/pydata/pandas-gbq/issues/326 SeriesRoundTripTestCase( input_series=pandas.Series( [ 0.14285714285714285, 0.4406779661016949, 1.05148, 1.05153, 1.8571428571428572, 2.718281828459045, 3.141592653589793, 2.0988936657440586e43, ], name="test_col", ), ), SeriesRoundTripTestCase( input_series=pandas.Series( [ "abc", "defg", # Ensure that unicode characters are encoded. See: # https://github.com/googleapis/python-bigquery-pandas/issues/106 "信用卡", "Skywalker™", "hülle", ], name="test_col", ), ), SeriesRoundTripTestCase( input_series=pandas.Series( [ "abc", "defg", # Ensure that empty strings are written as empty string, # not NULL. See: # https://github.com/googleapis/python-bigquery-pandas/issues/366 "", None, ], name="empty_strings", ), # BigQuery CSV loader uses empty string as the "null marker" by # default. Potentially one could choose a rarely used character or # string as the null marker to disambiguate null from empty string, # but then that string couldn't be loaded. # TODO: Revist when custom load job configuration is supported. # https://github.com/googleapis/python-bigquery-pandas/issues/425 api_methods={"load_parquet"}, ), ], ) def test_series_round_trip( method_under_test, random_dataset_id, read_gbq, input_series, api_method, api_methods, ): if api_method not in api_methods: pytest.skip(f"{api_method} not supported.") table_id = f"{random_dataset_id}.round_trip_{random.randrange(1_000_000)}" input_series = input_series.sort_values().reset_index(drop=True) df = pandas.DataFrame( # Some errors only occur in multi-column dataframes. See: # https://github.com/googleapis/python-bigquery-pandas/issues/366 {"test_col": input_series, "test_col2": input_series} )
method_under_test(df, table_id, api_method=api_method)
tests/system/test_to_gbq.py:110:
pandas_gbq/gbq.py:1157: in to_gbq
table_connector.create(table_id, table_schema)
pandas_gbq/gbq.py:1324: in create
self.process_http_error(ex)
ex = Forbidden('POST https://bigquery.googleapis.com/bigquery/v2/projects/precise-truck-742/datasets/python_bigquery_pandas... denied on dataset precise-truck-742:python_bigquery_pandas_tests_system_20220319131718_dafd1b (or it may not exist).')
@staticmethod def process_http_error(ex): # See `BigQuery Troubleshooting Errors # <https://cloud.google.com/bigquery/troubleshooting-errors>`__ if "cancelled" in ex.message: raise QueryTimeout("Reason: {0}".format(ex))
raise GenericGBQException("Reason: {0}".format(ex))
E pandas_gbq.exceptions.GenericGBQException: Reason: 403 POST https://bigquery.googleapis.com/bigquery/v2/projects/precise-truck-742/datasets/python_bigquery_pandas_tests_system_20220319131718_dafd1b/tables?prettyPrint=false: Access Denied: Dataset precise-truck-742:python_bigquery_pandas_tests_system_20220319131718_dafd1b: Permission bigquery.tables.create denied on dataset precise-truck-742:python_bigquery_pandas_tests_system_20220319131718_dafd1b (or it may not exist).
pandas_gbq/gbq.py:386: GenericGBQException