Skip to content

[SYCL] Fix WARP_SIZE=16 bug of Intel GPU #8266

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Jul 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion ggml/src/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -490,7 +490,7 @@ if (GGML_SYCL)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
else()
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
endif()

file(GLOB GGML_HEADERS_SYCL "ggml-sycl/*.hpp")
Expand Down
241 changes: 2 additions & 239 deletions ggml/src/ggml-sycl.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -892,117 +892,6 @@ static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, con
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
}


template <bool vals_smem, int ncols_template, int block_size_template>
static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
const int nrows_y, const float scale, const float max_bias, const float m0,
const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;

const int tid = item_ct1.get_local_id(2);
const int rowx = item_ct1.get_group(2);
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension

const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;

const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;

float slope = 1.0f;

// ALiBi
if (max_bias > 0.0f) {
const uint32_t h = rowx/nrows_y; // head index

const float base = h < n_head_log2 ? m0 : m1;
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;

slope = sycl::pow(base, float(exp));
}

float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols;
float max_val = -INFINITY;

for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;

if (ncols_template == 0 && col >= ncols) {
break;
}

const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col;

const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);

vals[col] = val;
max_val = sycl::max(max_val, val);
}

// find the max value in the block
max_val = warp_reduce_max(max_val, item_ct1);
if (block_size > WARP_SIZE) {
if (warp_id == 0) {
buf[lane_id] = -INFINITY;
}
item_ct1.barrier(sycl::access::fence_space::local_space);

if (lane_id == 0) {
buf[warp_id] = max_val;
}
item_ct1.barrier(sycl::access::fence_space::local_space);

max_val = buf[lane_id];
max_val = warp_reduce_max(max_val, item_ct1);
}

float tmp = 0.f;

#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
break;
}

const float val = sycl::native::exp(vals[col] - max_val);
tmp += val;
vals[col] = val;
}

// find the sum of exps in the block
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
item_ct1.barrier(sycl::access::fence_space::local_space);
if (warp_id == 0) {
buf[lane_id] = 0.f;
}
item_ct1.barrier(sycl::access::fence_space::local_space);

if (lane_id == 0) {
buf[warp_id] = tmp;
}
item_ct1.barrier(sycl::access::fence_space::local_space);

tmp = buf[lane_id];
tmp = warp_reduce_sum(tmp, item_ct1);
}

const float inv_sum = 1.f / tmp;

#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;

if (ncols_template == 0 && col >= ncols) {
return;
}

const int idst = rowx*ncols + col;
dst[idst] = vals[col] * inv_sum;
}
}

static void scale_f32(const float * x, float * dst, const float scale, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
Expand Down Expand Up @@ -1890,106 +1779,6 @@ static void diag_mask_inf_f32_sycl(const float *x, float *dst,
});
}

template <bool vals_smem, int ncols_template, int block_size_template>
static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
const int nrows_y, const float scale, const float max_bias, const float m0,
const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
const size_t n_local_scratch, queue_ptr stream) {
stream->submit([&](sycl::handler &cgh) {
sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);

cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
nrows_y, scale, max_bias, m0,
m1, n_head_log2, item_ct1,
local_buf_acc.get_pointer());
});
});
}

static void soft_max_f32_sycl(const float * x, const float * mask,
float * dst, const int ncols_x, const int nrows_x,
const int nrows_y, const float scale, const float max_bias,
queue_ptr stream, int device) {
int nth = WARP_SIZE;
int max_block_size = ggml_sycl_info().max_work_group_sizes[device];
while (nth < ncols_x && nth < max_block_size) nth *= 2;
if (nth>max_block_size) nth = max_block_size;

const sycl::range<3> block_dims(1, 1, nth);
const sycl::range<3> block_nums(1, 1, nrows_x);
const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);

const uint32_t n_head_kv = nrows_x/nrows_y;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));

const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);

const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
if (n_local_scratch*sizeof(float) < local_mem_size) {
if (ncols_x > max_block_size) {
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
return;
}
switch (ncols_x) {
case 32:
soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 64:
soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 128:
soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 256:
soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 512:
soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 1024:
soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 2048:
soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 4096:
soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
default:
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
}
} else {
soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, WARP_SIZE, stream);
}
}

template <typename T>
static void im2col_sycl(const float *x, T *dst, int IW, int IH,
int OW, int OH, int KW, int KH, int IC,
Expand Down Expand Up @@ -3009,33 +2798,6 @@ inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, const gg
(void) src1_dd;
}

inline void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {

GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);

#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional

const int64_t ne00 = src0->ne[0];
const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src0->ne[1];

float scale = 1.0f;
float max_bias = 0.0f;

memcpy(&scale, dst->op_params + 0, sizeof(float));
memcpy(&max_bias, dst->op_params + 1, sizeof(float));

soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
}

inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
Expand Down Expand Up @@ -5532,7 +5294,8 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
case GGML_OP_CONCAT:
{
ggml_type src0_type = op->src[0]->type;
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
int dim = op->op_params[0];
return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]) && src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16 && dim == 2;
} break;
case GGML_OP_DUP:
case GGML_OP_NONE:
Expand Down
1 change: 1 addition & 0 deletions ggml/src/ggml-sycl/backend.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -21,5 +21,6 @@
#include "mmvq.hpp"
#include "rope.hpp"
#include "norm.hpp"
#include "softmax.hpp"

#endif // GGML_SYCL_BACKEND_HPP
Loading
Loading