Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 14 additions & 27 deletions ggml.c
Original file line number Diff line number Diff line change
Expand Up @@ -9704,10 +9704,10 @@ static void ggml_compute_forward_group_norm(
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
// helper function to determine if it is better to use BLAS or not
// for large matrices, BLAS is faster
static bool ggml_compute_forward_mul_mat_use_blas(
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];

//const int64_t ne00 = src0->ne[0];
//const int64_t ne01 = src0->ne[1];

Expand Down Expand Up @@ -9787,7 +9787,7 @@ static void ggml_compute_forward_mul_mat(
#endif

#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (ggml_compute_forward_mul_mat_use_blas(dst)) {
if (params->ith != 0) {
return;
}
Expand Down Expand Up @@ -16301,24 +16301,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {

//n_tasks = MIN(n_threads, MAX(1, nr0/128));
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);

#if defined(GGML_USE_CUBLAS)
if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
}
#elif defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
}
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
}
#endif
} break;
case GGML_OP_MUL_MAT_ID:
{
Expand Down Expand Up @@ -16491,6 +16473,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
state->shared->node_n += 1;
return (thread_ret_t) GGML_EXIT_ABORTED;
}

if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
// all other threads are finished and spinning
// do finalize and init here so we don't have synchronize again
Expand Down Expand Up @@ -16556,14 +16539,18 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
} else {
// wait for other threads to finish
const int last = node_n;

const bool do_yield = last < 0 || cgraph->nodes[last]->op == GGML_OP_MUL_MAT;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Does this assume that GGML_OP_MUL_MAT is the only op that calls into blas? If so, that isn't right: see ggml_compute_forward_out_prod_f32().

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It probably should be added, but I have a benchmark just for GGML_OP_MUL_MAT at the moment, so cannot verify it atm. If you observe that it improves the performance, we can add it


while (true) {
// TODO: this sched_yield can have significant impact on the performance - either positive or negative
// depending on the workload and the operating system.
// since it is not clear what is the best approach, it should potentially become user-configurable
// ref: https://github.com/ggerganov/ggml/issues/291
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
sched_yield();
#endif
// UPD: adding the do_yield flag seems to resolve the issue universally
if (do_yield) {
sched_yield();
}

node_n = atomic_load(&state->shared->node_n);
if (node_n != last) break;
Expand Down Expand Up @@ -16642,7 +16629,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
} else
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
if (ggml_compute_forward_mul_mat_use_blas(node)) {
if (node->src[0]->type != GGML_TYPE_F32) {
// here we need memory just for single 2D matrix from src0
cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
Expand Down