Skip to content

metal : GPU "idle-throttling" analysis #10119

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ BUILD_TARGETS = \
llama-gguf-hash \
llama-gguf-split \
llama-gritlm \
llama-idle \
llama-imatrix \
llama-infill \
llama-llava-cli \
Expand Down
1 change: 1 addition & 0 deletions examples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ else()
add_subdirectory(gguf-split)
add_subdirectory(gguf)
add_subdirectory(gritlm)
add_subdirectory(idle)
add_subdirectory(imatrix)
add_subdirectory(infill)
add_subdirectory(llama-bench)
Expand Down
5 changes: 5 additions & 0 deletions examples/idle/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
set(TARGET llama-idle)
add_executable(${TARGET} idle.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
3 changes: 3 additions & 0 deletions examples/idle/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# llama.cpp/example/idle


112 changes: 112 additions & 0 deletions examples/idle/idle.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"

#include <cmath>
#include <cstdio>
#include <cstring>
#include <string>
#include <thread>
#include <vector>

static void print_usage(int /*argc*/, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m model.gguf [-ngl n_gpu_layers]\n", argv[0]);
printf("\n");
}

int main(int argc, char ** argv) {
common_params params;

if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
return 1;
}

common_init();

// init LLM

llama_backend_init();
llama_numa_init(params.numa);

// initialize the model

llama_model_params model_params = common_model_params_to_llama(params);

llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);

if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n" , __func__);
return 1;
}

const llama_vocab * vocab = llama_model_get_vocab(model);

// we need just a dummy token to evaluate
std::vector<llama_token> prompt_tokens(1, llama_vocab_bos(vocab));

llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = 512;
ctx_params.n_batch = 512;
ctx_params.no_perf = false;

llama_context * ctx = llama_init_from_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}

llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());

const int n_iters = 10;

// warm-up
llama_decode(ctx, batch);
llama_kv_cache_clear (ctx);
llama_kv_cache_update(ctx);
llama_synchronize (ctx);

for (int64_t t_pause_ms = 200; t_pause_ms <= 1800; t_pause_ms += 200) {
double t_sum_us = 0.0;
double t_sum2_us = 0.0;

for (int i = 0; i < n_iters; i++) {
// this pause is important - it simulates "idle GPU"
std::this_thread::sleep_for(std::chrono::milliseconds(t_pause_ms));

const int64_t t_start_us = llama_time_us();

// this should take constant time
llama_decode(ctx, batch);
llama_synchronize(ctx);

const int64_t t_end_us = llama_time_us();

const double t_cur_us = t_end_us - t_start_us;

#if 0
// print individual decode times
printf(" - decode time: %8.2f ms\n", t_cur_us / 1000);
#endif

t_sum_us += t_cur_us;
t_sum2_us += t_cur_us * t_cur_us;

llama_kv_cache_clear (ctx);
llama_kv_cache_update(ctx);
llama_synchronize (ctx); // just in case
}

const double t_avg_us = t_sum_us / n_iters;
const double t_dev_us = sqrt((t_sum2_us / (n_iters - 1)) - (t_avg_us * t_avg_us * n_iters) / (n_iters - 1));

printf("iters: %4d, pause: %5d ms, avg decode time: %8.2f +/- %4.2f ms\n", n_iters, (int) t_pause_ms, t_avg_us / 1000, t_dev_us / 1000);
fflush(stdout);
}

llama_free(ctx);
llama_model_free(model);

return 0;
}
Loading