Skip to content

Bug: Vulkan backend not detecting multiple GPUs anymore #7997

@richardanaya

Description

@richardanaya

What happened?

I have two 7900xtx that have worked before together, latest llama.cpp no longer detect more than one. @0cc4m

Name and Version

.\llama-server.exe -m ..\gguf_models\Cat-Llama-3-70B-instruct-Q4_K_M.gguf -ngl 100

What operating system are you seeing the problem on?

Windows

Relevant log output

.\llama-server.exe -m  ..\gguf_models\Cat-Llama-3-70B-instruct-Q4_K_M.gguf -ngl 100
INFO [                    main] build info | tid="92616" timestamp=1718758739 build=3181 commit="37bef894"
INFO [                    main] system info | tid="92616" timestamp=1718758739 n_threads=8 n_threads_batch=-1 total_threads=16 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | "
llama_model_loader: loaded meta data with 27 key-value pairs and 723 tensors from ..\gguf_models\Cat-Llama-3-70B-instruct-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = Cat-Llama-3-70B-instruct
llama_model_loader: - kv   2:                          llama.block_count u32              = 80
llama_model_loader: - kv   3:                       llama.context_length u32              = 8192
llama_model_loader: - kv   4:                     llama.embedding_length u32              = 8192
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 28672
llama_model_loader: - kv   6:                 llama.attention.head_count u32              = 64
llama_model_loader: - kv   7:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv   8:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 15
llama_model_loader: - kv  11:                           llama.vocab_size u32              = 128258
llama_model_loader: - kv  12:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  13:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  14:                         tokenizer.ggml.pre str              = llama-bpe
llama_model_loader: - kv  15:                      tokenizer.ggml.tokens arr[str,128258]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  16:                  tokenizer.ggml.token_type arr[i32,128258]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  17:                      tokenizer.ggml.merges arr[str,280147]  = ["─á ─á", "─á ─á─á─á", "─á─á ─á─á", "...
llama_model_loader: - kv  18:                tokenizer.ggml.bos_token_id u32              = 128000
llama_model_loader: - kv  19:                tokenizer.ggml.eos_token_id u32              = 128257
llama_model_loader: - kv  20:            tokenizer.ggml.padding_token_id u32              = 128001
llama_model_loader: - kv  21:                    tokenizer.chat_template str              = {% for message in messages %}{% if lo...
llama_model_loader: - kv  22:               general.quantization_version u32              = 2
llama_model_loader: - kv  23:                      quantize.imatrix.file str              = /models/Cat-Llama-3-70B-instruct-GGUF...
llama_model_loader: - kv  24:                   quantize.imatrix.dataset str              = /training_data/groups_merged.txt
llama_model_loader: - kv  25:             quantize.imatrix.entries_count i32              = 560
llama_model_loader: - kv  26:              quantize.imatrix.chunks_count i32              = 88
llama_model_loader: - type  f32:  161 tensors
llama_model_loader: - type q4_K:  441 tensors
llama_model_loader: - type q5_K:   40 tensors
llama_model_loader: - type q6_K:   81 tensors
llm_load_vocab: special tokens cache size = 258
llm_load_vocab: token to piece cache size = 0.8000 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 128258
llm_load_print_meta: n_merges         = 280147
llm_load_print_meta: n_ctx_train      = 8192
llm_load_print_meta: n_embd           = 8192
llm_load_print_meta: n_head           = 64
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_layer          = 80
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 8
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 28672
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 8192
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 70B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 70.55 B
llm_load_print_meta: model size       = 39.59 GiB (4.82 BPW)
llm_load_print_meta: general.name     = Cat-Llama-3-70B-instruct
llm_load_print_meta: BOS token        = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token        = 128257 '<|im_end|>'
llm_load_print_meta: PAD token        = 128001 '<|end_of_text|>'
llm_load_print_meta: LF token         = 128 'Ä'
llm_load_print_meta: EOT token        = 128257 '<|im_end|>'
ggml_vulkan: Found 1 Vulkan devices:
Vulkan0: AMD Radeon RX 7900 XTX (AMD proprietary driver) | uma: 0 | fp16: 1 | warp size: 64
llm_load_tensors: ggml ctx size =    0.74 MiB
ggml_vulkan: Device memory allocation of size 2123431936 failed.
ggml_vulkan: vk::Device::allocateMemory: ErrorOutOfDeviceMemory
llama_model_load: error loading model: unable to allocate backend buffer
llama_load_model_from_file: failed to load model
llama_init_from_gpt_params: error: failed to load model '..\gguf_models\Cat-Llama-3-70B-instruct-Q4_K_M.gguf'
 ERR [              load_model] unable to load model | tid="92616" timestamp=1718758751 model="..\\gguf_models\\Cat-Llama-3-70B-instruct-Q4_K_M.gguf"

Metadata

Metadata

Assignees

No one assigned

    Labels

    bug-unconfirmedhigh severityUsed to report high severity bugs in llama.cpp (Malfunctioning hinder important workflow)

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions