-
Notifications
You must be signed in to change notification settings - Fork 12.4k
Closed
Labels
Description
System information: Windows 11, cpu amd 7840u with 780m apu
Vulkan build: cmake .. -GNinja -DCMAKE_C_COMPILER=clang-cl -DCMAKE_CXX_COMPILER=clang-cl -DCMAKE_EXPORT_COMPILE_COMMANDS=1 -DLLAMA_VULKAN=1 -DLLAMA_NATIVE=OFF -DCMAKE_BUILD_TYPE=Release
CPU build: cmake .. -GNinja -DCMAKE_C_COMPILER=clang-cl -DCMAKE_CXX_COMPILER=clang-cl -DCMAKE_EXPORT_COMPILE_COMMANDS=1 -DLLAMA_NATIVE=OFF -DCMAKE_BUILD_TYPE=Release
Model: https://huggingface.co/second-state/All-MiniLM-L6-v2-Embedding-GGUF/tree/main
I think something is wrong with the support of embedding models.
Observations:
main
runs fine on vulkan backend, with a normal LLM model such as llama 3embedding
works on CPU backend with embedding models such as All-MiniLMembedding
"works" on vulkan backend with a normal LLM model such as llama 3, though the output is not meaningfulembedding
fails to run on CPU backend with the following log with embedding models such as All-MiniLM
main: build = 2794 (628b2991)
main: built with Clang 18.1.4 for
main: seed = 1715115389
llama_model_loader: loaded meta data with 24 key-value pairs and 101 tensors from ..\..\..\models\all-MiniLM-L6-v2-Q5_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = bert
llama_model_loader: - kv 1: general.name str = all-MiniLM-L6-v2
llama_model_loader: - kv 2: bert.block_count u32 = 6
llama_model_loader: - kv 3: bert.context_length u32 = 512
llama_model_loader: - kv 4: bert.embedding_length u32 = 384
llama_model_loader: - kv 5: bert.feed_forward_length u32 = 1536
llama_model_loader: - kv 6: bert.attention.head_count u32 = 12
llama_model_loader: - kv 7: bert.attention.layer_norm_epsilon f32 = 0.000000
llama_model_loader: - kv 8: general.file_type u32 = 17
llama_model_loader: - kv 9: bert.attention.causal bool = false
llama_model_loader: - kv 10: bert.pooling_type u32 = 1
llama_model_loader: - kv 11: tokenizer.ggml.token_type_count u32 = 2
llama_model_loader: - kv 12: tokenizer.ggml.bos_token_id u32 = 101
llama_model_loader: - kv 13: tokenizer.ggml.eos_token_id u32 = 102
llama_model_loader: - kv 14: tokenizer.ggml.model str = bert
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,30522] = ["[PAD]", "[unused0]", "[unused1]", "...
llama_model_loader: - kv 16: tokenizer.ggml.scores arr[f32,30522] = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv 17: tokenizer.ggml.token_type arr[i32,30522] = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 100
llama_model_loader: - kv 19: tokenizer.ggml.seperator_token_id u32 = 102
llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 21: tokenizer.ggml.cls_token_id u32 = 101
llama_model_loader: - kv 22: tokenizer.ggml.mask_token_id u32 = 103
llama_model_loader: - kv 23: general.quantization_version u32 = 2
llama_model_loader: - type f32: 63 tensors
llama_model_loader: - type f16: 1 tensors
llama_model_loader: - type q5_1: 28 tensors
llama_model_loader: - type q8_0: 3 tensors
llama_model_loader: - type q5_K: 4 tensors
llama_model_loader: - type q6_K: 2 tensors
llm_load_vocab: mismatch in special tokens definition ( 7104/30522 vs 5/30522 ).
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = bert
llm_load_print_meta: vocab type = WPM
llm_load_print_meta: n_vocab = 30522
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 512
llm_load_print_meta: n_embd = 384
llm_load_print_meta: n_head = 12
llm_load_print_meta: n_head_kv = 12
llm_load_print_meta: n_layer = 6
llm_load_print_meta: n_rot = 32
llm_load_print_meta: n_embd_head_k = 32
llm_load_print_meta: n_embd_head_v = 32
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 384
llm_load_print_meta: n_embd_v_gqa = 384
llm_load_print_meta: f_norm_eps = 1.0e-12
llm_load_print_meta: f_norm_rms_eps = 0.0e+00
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 1536
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 0
llm_load_print_meta: pooling type = 1
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 512
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 22M
llm_load_print_meta: model ftype = Q5_K - Medium
llm_load_print_meta: model params = 22.57 M
llm_load_print_meta: model size = 19.99 MiB (7.43 BPW)
llm_load_print_meta: general.name = all-MiniLM-L6-v2
llm_load_print_meta: BOS token = 101 '[CLS]'
llm_load_print_meta: EOS token = 102 '[SEP]'
llm_load_print_meta: UNK token = 100 '[UNK]'
llm_load_print_meta: SEP token = 102 '[SEP]'
llm_load_print_meta: PAD token = 0 '[PAD]'
llm_load_print_meta: CLS token = 101 '[CLS]'
llm_load_print_meta: MASK token = 103 '[MASK]'
llm_load_print_meta: LF token = 0 '[PAD]'
ggml_vulkan: Found 1 Vulkan devices:
Vulkan0: AMD Radeon(TM) 780M | uma: 1 | fp16: 1 | warp size: 64
llm_load_tensors: ggml ctx size = 0.05 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/7 layers to GPU
llm_load_tensors: CPU buffer size = 19.99 MiB
............................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 2048
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CPU KV buffer size = 4.50 MiB
llama_new_context_with_model: KV self size = 4.50 MiB, K (f16): 2.25 MiB, V (f16): 2.25 MiB
WARNING: failed to allocate 0.00 MB of pinned memory
GGML_ASSERT: C:\Users\adriankhl\git\learn\llama.cpp\ggml-backend.c:100: base != NULL && "backend buffer base cannot be NULL"
teleprint-me, lin72h and giladgd