-
Notifications
You must be signed in to change notification settings - Fork 12.4k
Closed
Labels
Description
I use this server config:
"host": "0.0.0.0",
"port": 8085,
"api_key": "api_key",
"models": [
{
"model": "models/phi3_mini_model/phi3_mini_model.gguf",
"model_alias": "gpt-3.5-turbo",
"chat_format": "chatml",
"n_gpu_layers": 35,
"offload_kqv": true,
"n_threads": 12,
"n_batch": 512,
"n_ctx": 2048
},
{
"model": "models/phi3_mini_model/phi3_mini_model.gguf",
"model_alias": "gpt-4",
"chat_format": "chatml",
"n_gpu_layers": 35,
"offload_kqv": true,
"n_threads": 12,
"n_batch": 512,
"n_ctx": 4096
},
{
"model": "models/llava15_vision_model/ggml-model-q4_k.gguf",
"model_alias": "gpt-4-vision-preview",
"chat_format": "llava-1-5",
"clip_model_path": "models/llava15_vision_model/mmproj-model-f16.gguf",
"n_gpu_layers": 35,
"offload_kqv": true,
"n_threads": 12,
"n_batch": 512,
"n_ctx": 2048,
"flash_attn": true
}
]
}
start server with this command:
python3 -m llama_cpp.server --config_file server_config.json
All works good for only text mode. But for llava 1.5, works only first run, after this for any image response is invalid.
I execute folllow notebook cells:
from openai import OpenAI
client = OpenAI(base_url="http://localtest.me:8085/v1", api_key="api_key")
import base64
import io
from PIL import Image
import requests
def load_image_and_convert_to_base64(url):
image = Image.open(requests.get(url, stream=True).raw)
image = image.resize((336, 336))
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
url_1 = "https://www.princeton.edu/sites/default/files/styles/1x_full_2x_half_crop/public/images/2022/02/KOA_Nassau_2697x1517.jpg?itok=Bg2K7j7J"
url_2 = "https://images.pexels.com/photos/106399/pexels-photo-106399.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=2"
first_image_b64 = load_image_and_convert_to_base64(url_1)
second_image_b64 = load_image_and_convert_to_base64(url_2)
def generate_caption(image_b64):
response = client.chat.completions.create(
model="gpt-4-vision-preview",
max_tokens=1000,
stop=["<|end|>"],
temperature=0.1,
messages=[
{
"role": "system",
"content": "You are an assistant who perfectly describes images."
},
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_b64}"}}
]
}
]
)
return response.choices[0].message.content
For first run works correctly:
Second run with another image dosen't work:
Here are logs for model loading:
clip_model_load: loaded meta data with 18 key-value pairs and 377 tensors from models/llava15_vision_model/mmproj-model-f16.gguf
clip_model_load: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
clip_model_load: - kv 0: general.architecture str = clip
clip_model_load: - kv 1: clip.has_text_encoder bool = false
clip_model_load: - kv 2: clip.has_vision_encoder bool = true
clip_model_load: - kv 3: clip.has_llava_projector bool = true
clip_model_load: - kv 4: general.file_type u32 = 1
clip_model_load: - kv 5: general.name str = openai/clip-vit-large-patch14-336
clip_model_load: - kv 6: general.description str = image encoder for LLaVA
clip_model_load: - kv 7: clip.vision.image_size u32 = 336
clip_model_load: - kv 8: clip.vision.patch_size u32 = 14
clip_model_load: - kv 9: clip.vision.embedding_length u32 = 1024
clip_model_load: - kv 10: clip.vision.feed_forward_length u32 = 4096
clip_model_load: - kv 11: clip.vision.projection_dim u32 = 768
clip_model_load: - kv 12: clip.vision.attention.head_count u32 = 16
clip_model_load: - kv 13: clip.vision.attention.layer_norm_epsilon f32 = 0.000010
clip_model_load: - kv 14: clip.vision.block_count u32 = 23
clip_model_load: - kv 15: clip.vision.image_mean arr[f32,3] = [0.481455, 0.457828, 0.408211]
clip_model_load: - kv 16: clip.vision.image_std arr[f32,3] = [0.268630, 0.261303, 0.275777]
clip_model_load: - kv 17: clip.use_gelu bool = false
clip_model_load: - type f32: 235 tensors
clip_model_load: - type f16: 142 tensors
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M3 Max
ggml_metal_init: picking default device: Apple M3 Max
ggml_metal_init: using embedded metal library
ggml_metal_init: GPU name: Apple M3 Max
ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
ggml_metal_init: simdgroup reduction support = true
ggml_metal_init: simdgroup matrix mul. support = true
ggml_metal_init: hasUnifiedMemory = true
ggml_metal_init: recommendedMaxWorkingSetSize = 28991.03 MB
clip_model_load: CLIP using Metal backend
clip_model_load: params backend buffer size = 595.49 MB (377 tensors)
key clip.vision.image_grid_pinpoints not found in file
key clip.vision.mm_patch_merge_type not found in file
key clip.vision.image_crop_resolution not found in file
clip_model_load: compute allocated memory: 32.89 MB
llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from models/llava15_vision_model/ggml-model-q4_k.gguf (version GGUF V2)
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = LLaMA v2
llama_model_loader: - kv 2: llama.context_length u32 = 4096
llama_model_loader: - kv 3: llama.embedding_length u32 = 4096
llama_model_loader: - kv 4: llama.block_count u32 = 32
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 11008
llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 7: llama.attention.head_count u32 = 32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 32
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 10: general.file_type u32 = 15
llama_model_loader: - kv 11: tokenizer.ggml.model str = llama
llama_model_loader: - kv 12: tokenizer.ggml.tokens arr[str,32000] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 13: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 17: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 18: general.quantization_version u32 = 2
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q4_K: 193 tensors
llama_model_loader: - type q6_K: 33 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format = GGUF V2
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 4096
llm_load_print_meta: n_embd_v_gqa = 4096
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 11008
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 4096
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 6.74 B
llm_load_print_meta: model size = 3.80 GiB (4.84 BPW)
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: PAD token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.30 MiB
ggml_backend_metal_log_allocated_size: allocated buffer, size = 3820.94 MiB, ( 4460.03 / 27648.00)
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors: CPU buffer size = 70.31 MiB
llm_load_tensors: Metal buffer size = 3820.93 MiB
..................................................................................................
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M3 Max
ggml_metal_init: picking default device: Apple M3 Max
ggml_metal_init: using embedded metal library
ggml_metal_init: GPU name: Apple M3 Max
ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
ggml_metal_init: simdgroup reduction support = true
ggml_metal_init: simdgroup matrix mul. support = true
ggml_metal_init: hasUnifiedMemory = true
ggml_metal_init: recommendedMaxWorkingSetSize = 28991.03 MB
llama_kv_cache_init: Metal KV buffer size = 1024.00 MiB
llama_new_context_with_model: KV self size = 1024.00 MiB, K (f16): 512.00 MiB, V (f16): 512.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.14 MiB
llama_new_context_with_model: Metal compute buffer size = 164.00 MiB
llama_new_context_with_model: CPU compute buffer size = 12.01 MiB
llama_new_context_with_model: graph nodes = 1030
llama_new_context_with_model: graph splits = 2
AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
Model metadata: {'general.quantization_version': '2', 'tokenizer.ggml.padding_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'tokenizer.ggml.bos_token_id': '1', 'tokenizer.ggml.model': 'llama', 'llama.attention.head_count_kv': '32', 'llama.context_length': '4096', 'llama.attention.head_count': '32', 'llama.rope.dimension_count': '128', 'general.file_type': '15', 'llama.feed_forward_length': '11008', 'llama.embedding_length': '4096', 'llama.block_count': '32', 'general.architecture': 'llama', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'general.name': 'LLaMA v2'}
encode_image_with_clip: image embedding created: 576 tokens
bddowningjennings-dev and sam3u7858