Skip to content

[User] train-text-from-scratch.exe stop before"begin training" #2131

Closed
@SkibaSAY

Description

@SkibaSAY

Prerequisites

Please answer the following questions for yourself before submitting an issue.

Expected Behavior

The command will end after training, the trained model will be saved

Current Behavior

The execution is completed before the start of the training. There are no errors and no trained model.

Environment and Context

Windows 11 Pro(version 21H2)
Intel(R) Core(TM) i5-12600KF 3.70 GHz
RAM 32,0
Cuda 12.0

$ Python 3.10.11
$ cmake version 3.27.0-rc3

Failure Information (for bugs)

It looks like #1869.
I checked, my version already contains the fixes suggested here 5ec8dd5

Steps to Reproduce

1.I have bowed the last master(master-481f793).
2.run train-text-from-scratch, but the application terminates without an error before reaching "begin training":

(from llama.cpp): build\bin\Release\train-text-from-scratch.exe --vocab-model models\ggml-vocab.bin --checkpoint-in chk-lamartine-256x16.bin --checkpoint-out chk-lamartine-256x16.bin --model-out ggml-lamartine-265x16-f32.bin --train-data "shakespeare.txt"

3.execution ends before calling line 3195 printf("%s: begin training\n", func);
in the train-text-from-scratch file

Failure Logs

D:\torrents\LlamaCppTest\llama.cpp>build\bin\Release\train-text-from-scratch.exe --vocab-model models\ggml-vocab.bin --checkpoint-in chk-lamartine-256x16.bin --checkpoint-out chk-lamartine-256x16.bin --model-out ggml-lamartine-265x16-f32.bin --train-data "shakespeare.txt"
main: seed: 1688730007
llama.cpp: loading model from models\ggml-vocab.bin
llama_model_load_internal: format = ggjt v1 (pre #1405)
llama_model_load_internal: n_vocab = 32000
llama_model_load_internal: n_ctx = 512
llama_model_load_internal: n_embd = 4096
llama_model_load_internal: n_mult = 256
llama_model_load_internal: n_head = 32
llama_model_load_internal: n_layer = 32
llama_model_load_internal: n_rot = 128
llama_model_load_internal: ftype = 1 (mostly F16)
llama_model_load_internal: n_ff = 11008
llama_model_load_internal: model size = 7B
main: tokenize training data
main: number of training tokens: 27584
print_params: n_vocab: 32000
print_params: n_ctx: 128
print_params: n_embd: 256
print_params: n_mult: 256
print_params: n_head: 8
print_params: n_ff: 768
print_params: n_layer: 16
print_params: n_rot: 32
main: number of unique tokens: 3070
main: init model
load_checkpoint: Training iterations: 0.
load_checkpoint: Training samples: 0.
load_checkpoint: Training tokens: 0.
main: opt iter 0
used_mem model+cache: 244466304 bytes

D:\torrents\LlamaCppTest\llama.cpp>

My Task(I need advice or an opinion on this task - everything will be useful.)

I need to refine the model based on my data (I have a set of html files from which I need to extract information about the winner (tender purchases) - parsing tools are ineffective because html is generated from ordinary files and we don't know anything about their structure in advance. I have a set of examples for which I know the correct answer, using these examples I want to train a new model or retrain an existing openassistant-llama-30b-ggml-q5_1.bin

If you have any tips or information on how I can retrain an existing model based on my data, please share them - thank you.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions