Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 26 additions & 0 deletions assignment_3/SVM_by_subham/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
## Approach

1. Generated the toy dataset using make_blobs

2. Converted the data into a dictionary data_dict with positive class as 1 and negative as -1.

3. Made a class named SVM with 3 method.
- fit
- predict
- visualize

4. In method fit, searched for the optimum w and optimum b in the range of -(maximum feature value) to +(maximum feature value) initialy and then decreased the range with 0.1 then with 0.01 and lastly with 0.001. If any w and b are the required w and b then checked the condition yi*(xi*w+b) >= 1 to be true.

5. Visualised the data with the method visualize.And the results is like this:
![image info](./svm.png)


## Steps to run

1. If want to run with the default dataset:
- clone the repo.
- run the svmfrombasic.py script in terminal by the command => python svmfrombasic.py

2. If want to use a different dataset:
- clone the repo
- create your own dataset and change the python file accodingly and chnge the parameter of svm.fit and svm.visualize with your own dataset.
Binary file added assignment_3/SVM_by_subham/svm.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
128 changes: 128 additions & 0 deletions assignment_3/SVM_by_subham/svmfrombasic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May 14 10:37:01 2019

@author: subham
"""

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets.samples_generator import make_blobs

(X,y) = make_blobs(n_samples=50,n_features=2,centers=2,cluster_std=1.05,random_state=11)

plt.scatter(X[:,0],X[:,1],marker='*',c=y)
plt.axis()
plt.show()

postiveX=[]
negativeX=[]
for i,v in enumerate(y):
if v==0:
negativeX.append(X[i])
else:
postiveX.append(X[i])

#data dictionary
data_dict = {-1:np.array(negativeX), 1:np.array(postiveX)}

#class for implementing SVM
class SVM:
def __init__(self, visualization=True):
self.visualization = visualization
self.colors = {1:'r', -1:'b'}
if self.visualization:
self.fig = plt.figure()
self.axis = self.fig.add_subplot(1,1,1)

#Method for training the dataset
def fit(self, data):
self.data = data
#opt_dict is a dictionary of { ||w|| : [w,b]}
opt_dict = {}

transforms = [[1,1],[-1,1],[1,-1],[-1,-1]]
all_data = []

for yi in self.data:
for featureset in self.data[yi]:
for feature in featureset:
all_data.append(feature)

self.max_feature_value = max(all_data)
self.min_feature_value = min(all_data)
all_data = None

step_sizes = [self.max_feature_value * 0.1, self.max_feature_value * 0.01, self.max_feature_value * 0.001]
b_range_multiple = 5
b_multiple = 5
latest_optimum = self.max_feature_value * 10

for step in step_sizes:
w = np.array([latest_optimum, latest_optimum])
optimized_flag = 0
while not optimized_flag:
for b in np.arange(-1*(self.max_feature_value*b_range_multiple), 1*(self.max_feature_value*b_range_multiple), step*b_multiple):
for transform in transforms:
w_t = w * transform
#print(w_t)
found_street_points = False
for yi in self.data:
for xi in self.data[yi]:
if not yi*(np.dot(xi, w_t)+b) >= 1:
found_street_points = True
if not (found_street_points):
opt_dict[np.linalg.norm(w_t)] = [w_t, b]

if w[0] < 0:
optimized_flag = 1
print('optimized a step...')
else:
w = w-step

norms = sorted([mod_w for mod_w in opt_dict])
opt_choice = opt_dict[norms[0]]
self.w = opt_choice[0]
self.b = opt_choice[1]
latest_optimum = opt_choice[0][0]+step*2


#Method for prediction of new data points
def predict(self, features):
#Predict the sign of (x.w+b)
classify = np.sign(np.dot(np.array(features), self.w)+self.b)
if classify == 0:
print('there is a 50% chance of the data point being in either of the class!!!!')

return classify

def visualize(self, data):
[[plt.scatter(x[0], x[1], s=100, color= self.colors[i], marker='*') for x in data[i]] for i in data]

def hyperplane(x,w,b,v):
return (-w[0]*x-b+v) / w[1]

hyp_x_min = self.min_feature_value * 0.9
hyp_x_max = self.max_feature_value * 1.1

psv1 = hyperplane(hyp_x_min, self.w, self.b, 1)
psv2 = hyperplane(hyp_x_max, self.w, self.b, 1)
plt.plot([hyp_x_min,hyp_x_max],[psv1, psv2])

nsv1 = hyperplane(hyp_x_min, self.w, self.b, -1)
nsv2 = hyperplane(hyp_x_max, self.w, self.b, -1)
plt.plot([hyp_x_min,hyp_x_max],[nsv1, nsv2])

dl1 = hyperplane(hyp_x_min, self.w, self.b, 0)
dl2 = hyperplane(hyp_x_max, self.w, self.b, 0)
plt.plot([hyp_x_min,hyp_x_max],[dl1, dl2])
#print('printing the SVM plot')
plt.show()


svm = SVM()
svm.fit(data = data_dict)
svm.visualize(data = data_dict)

35 changes: 35 additions & 0 deletions assignment_3/SVM_by_subham/svmusinglib.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May 14 17:38:15 2019

@author: subham
"""
import matplotlib.pyplot as plt
from matplotlib import style
import numpy as np

from sklearn.datasets.samples_generator import make_blobs

(X,y) = make_blobs(n_samples=50,n_features=2,centers=2,cluster_std=1.05,random_state=40)

plt.scatter(X[:,0],X[:,1],marker='*',c=y)
plt.axis()
plt.show()

postiveX=[]
negativeX=[]
for i,v in enumerate(y):
if v==0:
negativeX.append(X[i])
else:
postiveX.append(X[i])

#data dictionary
data_dict = {-1:np.array(negativeX), 1:np.array(postiveX)}

from sklearn.svm import LinearSVC

clf = LinearSVC(random_state=0, tol=1e-5)
clf.fit(X, y)