-
Notifications
You must be signed in to change notification settings - Fork 575
feat: add NaN detection during training #4986
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: devel
Are you sure you want to change the base?
Changes from all commits
ef431a1
9eb1bea
5a22dfc
0852b7c
7a2b41e
22cb9ef
0bebb06
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -75,6 +75,9 @@ | |
| from deepmd.utils.data import ( | ||
| DataRequirementItem, | ||
| ) | ||
| from deepmd.utils.nan_detector import ( | ||
| check_total_loss_nan, | ||
| ) | ||
| from deepmd.utils.path import ( | ||
| DPH5Path, | ||
| ) | ||
|
|
@@ -859,6 +862,9 @@ def log_loss_valid(_task_key="Default"): | |
|
|
||
| if not self.multi_task: | ||
| train_results = log_loss_train(loss, more_loss) | ||
| # Check for NaN in total loss using CPU values from lcurve computation | ||
| if self.rank == 0 and "rmse" in train_results: | ||
| check_total_loss_nan(display_step_id, train_results["rmse"]) | ||
| valid_results = log_loss_valid() | ||
| if self.rank == 0: | ||
| log.info( | ||
|
|
@@ -900,6 +906,11 @@ def log_loss_valid(_task_key="Default"): | |
| loss, more_loss, _task_key=_key | ||
| ) | ||
| valid_results[_key] = log_loss_valid(_task_key=_key) | ||
| # Check for NaN in total loss using CPU values from lcurve computation | ||
| if self.rank == 0 and "rmse" in train_results[_key]: | ||
| check_total_loss_nan( | ||
| display_step_id, train_results[_key]["rmse"] | ||
|
||
| ) | ||
| if self.rank == 0: | ||
| log.info( | ||
| format_training_message_per_task( | ||
|
|
||
njzjz marked this conversation as resolved.
Show resolved
Hide resolved
|
| Original file line number | Diff line number | Diff line change | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
@@ -75,6 +75,9 @@ | |||||||||||||
| from deepmd.utils.data import ( | ||||||||||||||
| DataRequirementItem, | ||||||||||||||
| ) | ||||||||||||||
| from deepmd.utils.nan_detector import ( | ||||||||||||||
| check_total_loss_nan, | ||||||||||||||
| ) | ||||||||||||||
|
|
||||||||||||||
| if torch.__version__.startswith("2"): | ||||||||||||||
| import torch._dynamo | ||||||||||||||
|
|
@@ -949,6 +952,9 @@ def log_loss_valid(_task_key: str = "Default") -> dict: | |||||||||||||
|
|
||||||||||||||
| if not self.multi_task: | ||||||||||||||
| train_results = log_loss_train(loss, more_loss) | ||||||||||||||
| # Check for NaN in total loss using CPU values from lcurve computation | ||||||||||||||
| if self.rank == 0 and "rmse" in train_results: | ||||||||||||||
| check_total_loss_nan(display_step_id, train_results["rmse"]) | ||||||||||||||
|
Comment on lines
+956
to
+957
|
||||||||||||||
| if self.rank == 0 and "rmse" in train_results: | |
| check_total_loss_nan(display_step_id, train_results["rmse"]) | |
| if self.rank == 0: | |
| check_total_loss_nan(display_step_id, loss) |
Copilot
AI
Sep 22, 2025
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The function is checking 'rmse' which represents root mean square error, not total loss. This could miss NaN in the actual total loss while falsely triggering on RMSE calculations. Consider using the actual total loss value instead of RMSE.
| if self.rank == 0 and "rmse" in train_results[_key]: | |
| check_total_loss_nan( | |
| display_step_id, train_results[_key]["rmse"] | |
| if self.rank == 0: | |
| check_total_loss_nan( | |
| display_step_id, loss |
| Original file line number | Diff line number | Diff line change | ||||
|---|---|---|---|---|---|---|
|
|
@@ -60,6 +60,9 @@ | |||||
| from deepmd.utils.data import ( | ||||||
| DataRequirementItem, | ||||||
| ) | ||||||
| from deepmd.utils.nan_detector import ( | ||||||
| check_total_loss_nan, | ||||||
| ) | ||||||
|
|
||||||
| log = logging.getLogger(__name__) | ||||||
|
|
||||||
|
|
@@ -684,6 +687,11 @@ def valid_on_the_fly( | |||||
|
|
||||||
| cur_batch = self.cur_batch | ||||||
| current_lr = run_sess(self.sess, self.learning_rate) | ||||||
|
|
||||||
| # Check for NaN in total loss before writing to file and saving checkpoint | ||||||
| # We check the main total loss component that represents training loss | ||||||
| check_total_loss_nan(cur_batch, train_results["rmse"]) | ||||||
|
||||||
| check_total_loss_nan(cur_batch, train_results["rmse"]) | |
| check_total_loss_nan(cur_batch, train_results["loss"]) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[P1] Guard against missing 'rmse' metric in TensorFlow NaN check
NaN detection in valid_on_the_fly calls check_total_loss_nan(cur_batch, train_results["rmse"]) unconditionally. However get_evaluation_results often produces metrics keyed as rmse_e, rmse_f, etc., and does not guarantee a "rmse" entry (the comment below mentions rmse_*). In those configurations training now raises KeyError: 'rmse' before any logging or checkpointing, whereas the Paddle and PyTorch trainers already guard with "rmse" in train_results. TensorFlow should perform the same presence check or compute the appropriate scalar before invoking the NaN detector.
Useful? React with 👍 / 👎.
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,54 @@ | ||
| # SPDX-License-Identifier: LGPL-3.0-or-later | ||
| """Utilities for detecting NaN values in loss during training.""" | ||
|
|
||
| import logging | ||
| import math | ||
|
|
||
| log = logging.getLogger(__name__) | ||
|
|
||
|
|
||
| class LossNaNError(RuntimeError): | ||
| """Exception raised when NaN is detected in total loss during training.""" | ||
|
|
||
| def __init__(self, step: int, total_loss: float) -> None: | ||
| """Initialize the exception. | ||
|
|
||
| Parameters | ||
| ---------- | ||
| step : int | ||
| The training step where NaN was detected | ||
| total_loss : float | ||
| The total loss value that contains NaN | ||
| """ | ||
| self.step = step | ||
| self.total_loss = total_loss | ||
| message = ( | ||
| f"NaN detected in total loss at training step {step}: {total_loss}. " | ||
| f"Training stopped to prevent wasting time with corrupted parameters. " | ||
| f"This typically indicates unstable training conditions such as " | ||
| f"learning rate too high, poor data quality, or numerical instability." | ||
| ) | ||
| super().__init__(message) | ||
|
|
||
|
|
||
| def check_total_loss_nan(step: int, total_loss: float) -> None: | ||
| """Check if the total loss contains NaN and raise an exception if found. | ||
|
|
||
| This function is designed to be called during training after the total loss | ||
| is computed and converted to a CPU float value. | ||
|
|
||
| Parameters | ||
| ---------- | ||
| step : int | ||
| Current training step | ||
| total_loss : float | ||
| Total loss value to check for NaN | ||
|
|
||
| Raises | ||
| ------ | ||
| LossNaNError | ||
| If the total loss contains NaN | ||
| """ | ||
| if math.isnan(total_loss): | ||
| log.error(f"NaN detected in total loss at step {step}: {total_loss}") | ||
| raise LossNaNError(step, total_loss) |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,100 @@ | ||
| # SPDX-License-Identifier: LGPL-3.0-or-later | ||
| """Test cases for NaN detection utility.""" | ||
|
|
||
| import math | ||
| import unittest | ||
|
|
||
| import numpy as np | ||
|
|
||
| from deepmd.utils.nan_detector import ( | ||
| LossNaNError, | ||
| check_total_loss_nan, | ||
| ) | ||
|
|
||
|
|
||
| class TestNaNDetector(unittest.TestCase): | ||
| """Test the NaN detection utility functions.""" | ||
|
|
||
| def test_normal_values_pass(self): | ||
| """Test that normal loss values don't trigger NaN detection.""" | ||
| # Test with various normal values | ||
| normal_losses = [0.5, 1.0, 0.001, 0.0, -0.5] | ||
|
|
||
| # Should not raise any exception | ||
| for i, loss_val in enumerate(normal_losses): | ||
| check_total_loss_nan(100 + i, loss_val) | ||
|
|
||
| def test_nan_detection_raises_exception(self): | ||
| """Test that NaN values trigger the proper exception.""" | ||
| # Test with NaN value | ||
| with self.assertRaises(LossNaNError) as context: | ||
| check_total_loss_nan(200, float("nan")) | ||
|
|
||
| exception = context.exception | ||
| self.assertEqual(exception.step, 200) | ||
| self.assertTrue(math.isnan(exception.total_loss)) | ||
| self.assertIn("NaN detected in total loss at training step 200", str(exception)) | ||
|
|
||
| def test_various_nan_representations(self): | ||
| """Test detection of various NaN representations.""" | ||
| nan_values = [ | ||
| float("nan"), | ||
| np.nan, | ||
| math.nan, | ||
| ] | ||
|
|
||
| for i, nan_val in enumerate(nan_values): | ||
| with self.assertRaises(LossNaNError): | ||
| check_total_loss_nan(i, nan_val) | ||
|
|
||
| def test_error_message_format(self): | ||
| """Test that error messages contain useful information.""" | ||
| with self.assertRaises(LossNaNError) as context: | ||
| check_total_loss_nan(123, float("nan")) | ||
|
|
||
| error_msg = str(context.exception) | ||
|
|
||
| # Check key information is in the message | ||
| self.assertIn("step 123", error_msg) | ||
| self.assertIn("Training stopped", error_msg) | ||
| self.assertIn("learning rate too high", error_msg) | ||
|
|
||
| def test_edge_cases(self): | ||
| """Test edge cases for NaN detection.""" | ||
| # Infinity should not trigger NaN detection (separate issue) | ||
| try: | ||
| check_total_loss_nan(1, float("inf")) | ||
| check_total_loss_nan(2, float("-inf")) | ||
| except Exception as e: | ||
| self.fail(f"Infinity should not raise NaN exception: {e}") | ||
|
|
||
| def test_numeric_types(self): | ||
| """Test that various numeric types work correctly.""" | ||
| # Various numeric types that should pass | ||
| test_values = [ | ||
| 0.5, # float | ||
| 1, # int | ||
| np.float32(0.3), # NumPy float32 | ||
| np.float64(0.7), # NumPy float64 | ||
| ] | ||
|
|
||
| for i, val in enumerate(test_values): | ||
| try: | ||
| check_total_loss_nan(10 + i, float(val)) | ||
| except Exception as e: | ||
| self.fail(f"Numeric type {type(val)} should not raise exception: {e}") | ||
|
|
||
| def test_inheritance_from_runtime_error(self): | ||
| """Test that LossNaNError inherits from RuntimeError.""" | ||
| self.assertTrue(issubclass(LossNaNError, RuntimeError)) | ||
|
|
||
| try: | ||
| check_total_loss_nan(999, float("nan")) | ||
| except LossNaNError as e: | ||
| self.assertIsInstance(e, RuntimeError) | ||
| except Exception: | ||
| self.fail("Should raise LossNaNError which inherits from RuntimeError") | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| unittest.main() |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,93 @@ | ||
| # SPDX-License-Identifier: LGPL-3.0-or-later | ||
| """Integration test to verify NaN detection during training. | ||
|
|
||
| This test creates a mock training scenario where total loss becomes NaN | ||
| and verifies that the training stops with appropriate error message. | ||
| """ | ||
|
|
||
| import unittest | ||
| from unittest.mock import ( | ||
| patch, | ||
| ) | ||
|
|
||
| from deepmd.utils.nan_detector import ( | ||
| LossNaNError, | ||
| check_total_loss_nan, | ||
| ) | ||
|
|
||
|
|
||
| class TestNaNDetectionIntegration(unittest.TestCase): | ||
| """Integration tests for NaN detection during training.""" | ||
|
|
||
| def test_training_stops_on_nan_loss(self): | ||
| """Test that training stops when NaN is detected in total loss.""" | ||
| # Normal total loss should pass | ||
| try: | ||
| check_total_loss_nan(100, 0.1) | ||
| except Exception as e: | ||
| self.fail(f"Normal total loss should not raise exception: {e}") | ||
|
|
||
| # NaN total loss should raise | ||
| with self.assertRaises(LossNaNError) as context: | ||
| check_total_loss_nan(100, float("nan")) | ||
|
|
||
| exception = context.exception | ||
| self.assertEqual(exception.step, 100) | ||
| self.assertIn("NaN detected in total loss", str(exception)) | ||
|
|
||
| @patch("deepmd.utils.nan_detector.log") | ||
| def test_logging_on_nan_detection(self, mock_log): | ||
| """Test that NaN detection logs appropriate error messages.""" | ||
| with self.assertRaises(LossNaNError): | ||
| check_total_loss_nan(200, float("nan")) | ||
|
|
||
| # Verify that error was logged | ||
| mock_log.error.assert_called_once() | ||
| logged_message = mock_log.error.call_args[0][0] | ||
| self.assertIn("NaN detected in total loss at step 200", logged_message) | ||
|
|
||
| def test_training_simulation_with_checkpoint_prevention(self): | ||
| """Simulate the training checkpoint scenario to ensure NaN prevents saving.""" | ||
| # Simulate the training flow: check total loss, then save checkpoint | ||
| step_id = 1000 | ||
| total_loss = float("nan") | ||
|
|
||
| # This should raise LossNaNError, preventing any subsequent checkpoint saving | ||
| with self.assertRaises(LossNaNError) as context: | ||
| check_total_loss_nan(step_id, total_loss) | ||
|
|
||
| # Verify the error contains expected information | ||
| exception = context.exception | ||
| self.assertIn("Training stopped to prevent wasting time", str(exception)) | ||
| self.assertIn("corrupted parameters", str(exception)) | ||
|
|
||
| def test_realistic_training_scenario(self): | ||
| """Test a more realistic training scenario with decreasing then NaN loss.""" | ||
| # Simulate normal training progression | ||
| normal_steps = [ | ||
| (1, 1.0), # Initial high loss | ||
| (10, 0.5), # Loss decreasing | ||
| (20, 0.25), # Loss continuing to decrease | ||
| (50, 0.1), # Good progress | ||
| ] | ||
|
|
||
| # All normal steps should pass | ||
| for step, loss_val in normal_steps: | ||
| try: | ||
| check_total_loss_nan(step, loss_val) | ||
| except Exception as e: | ||
| self.fail( | ||
| f"Normal training step {step} should not raise exception: {e}" | ||
| ) | ||
|
|
||
| # But when loss becomes NaN, training should stop | ||
| with self.assertRaises(LossNaNError) as context: | ||
| check_total_loss_nan(100, float("nan")) | ||
|
|
||
| exception = context.exception | ||
| self.assertEqual(exception.step, 100) | ||
| self.assertIn("Training stopped", str(exception)) | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| unittest.main() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The function is checking 'rmse' which represents root mean square error, not total loss. This could miss NaN in the actual total loss while falsely triggering on RMSE calculations. Consider using the actual total loss value instead of RMSE.