Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 12 additions & 9 deletions comfy_extras/nodes_mask.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,35 +12,38 @@
def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
source = source.to(destination.device)
if resize_source:
source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")
source = torch.nn.functional.interpolate(source, size=(destination.shape[-2], destination.shape[-1]), mode="bilinear")

source = comfy.utils.repeat_to_batch_size(source, destination.shape[0])

x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))
x = max(-source.shape[-1] * multiplier, min(x, destination.shape[-1] * multiplier))
y = max(-source.shape[-2] * multiplier, min(y, destination.shape[-2] * multiplier))

left, top = (x // multiplier, y // multiplier)
right, bottom = (left + source.shape[3], top + source.shape[2],)
right, bottom = (left + source.shape[-1], top + source.shape[-2],)

if mask is None:
mask = torch.ones_like(source)
else:
mask = mask.to(destination.device, copy=True)
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(source.shape[2], source.shape[3]), mode="bilinear")
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(source.shape[-2], source.shape[-1]), mode="bilinear")
mask = comfy.utils.repeat_to_batch_size(mask, source.shape[0])

# calculate the bounds of the source that will be overlapping the destination
# this prevents the source trying to overwrite latent pixels that are out of bounds
# of the destination
visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),)
visible_width, visible_height = (destination.shape[-1] - left + min(0, x), destination.shape[-2] - top + min(0, y),)

mask = mask[:, :, :visible_height, :visible_width]
if mask.ndim < source.ndim:
mask = mask.unsqueeze(1)

inverse_mask = torch.ones_like(mask) - mask

source_portion = mask * source[:, :, :visible_height, :visible_width]
destination_portion = inverse_mask * destination[:, :, top:bottom, left:right]
source_portion = mask * source[..., :visible_height, :visible_width]
destination_portion = inverse_mask * destination[..., top:bottom, left:right]

destination[:, :, top:bottom, left:right] = source_portion + destination_portion
destination[..., top:bottom, left:right] = source_portion + destination_portion
return destination

class LatentCompositeMasked:
Expand Down
Loading