Skip to content

Port public R queries #31

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 13 commits into from
Jul 16, 2024
18 changes: 9 additions & 9 deletions epidatpy/_endpoints.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ def pub_covid_hosp_facility_lookup(
EpidataFieldInfo("city", EpidataFieldType.text),
EpidataFieldInfo("zip", EpidataFieldType.text),
EpidataFieldInfo("hospital_subtype", EpidataFieldType.text),
EpidataFieldInfo("fip_code", EpidataFieldType.text),
EpidataFieldInfo("fips_code", EpidataFieldType.text),
EpidataFieldInfo("is_metro_micro", EpidataFieldType.int),
],
)
Expand Down Expand Up @@ -553,7 +553,7 @@ def pub_ecdc_ili(
[
EpidataFieldInfo("region", EpidataFieldType.text),
EpidataFieldInfo("release_date", EpidataFieldType.date),
EpidataFieldInfo("issue", EpidataFieldType.date),
EpidataFieldInfo("issue", EpidataFieldType.epiweek),
EpidataFieldInfo("epiweek", EpidataFieldType.epiweek),
EpidataFieldInfo("lag", EpidataFieldType.int),
EpidataFieldInfo("incidence_rate", EpidataFieldType.float),
Expand Down Expand Up @@ -584,15 +584,15 @@ def pub_flusurv(
[
EpidataFieldInfo("release_date", EpidataFieldType.text),
EpidataFieldInfo("location", EpidataFieldType.text),
EpidataFieldInfo("issue", EpidataFieldType.date),
EpidataFieldInfo("issue", EpidataFieldType.date_or_epiweek),
EpidataFieldInfo("epiweek", EpidataFieldType.epiweek),
EpidataFieldInfo("lag", EpidataFieldType.int),
EpidataFieldInfo("rage_age_0", EpidataFieldType.float),
EpidataFieldInfo("rage_age_1", EpidataFieldType.float),
EpidataFieldInfo("rage_age_2", EpidataFieldType.float),
EpidataFieldInfo("rage_age_3", EpidataFieldType.float),
EpidataFieldInfo("rage_age_4", EpidataFieldType.float),
EpidataFieldInfo("rage_overall", EpidataFieldType.float),
EpidataFieldInfo("rate_age_0", EpidataFieldType.float),
EpidataFieldInfo("rate_age_1", EpidataFieldType.float),
EpidataFieldInfo("rate_age_2", EpidataFieldType.float),
EpidataFieldInfo("rate_age_3", EpidataFieldType.float),
EpidataFieldInfo("rate_age_4", EpidataFieldType.float),
EpidataFieldInfo("rate_overall", EpidataFieldType.float),
],
)

Expand Down
8 changes: 7 additions & 1 deletion epidatpy/_parse.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,11 @@ def parse_api_date(value: Union[str, int, float, None]) -> Optional[date]:
if value is None:
return value
v = str(value)
return datetime.strptime(v, "%Y%m%d").date()
if len(v) == 10: # yyyy-mm-dd
d = datetime.strptime(v, "%Y-%m-%d").date()
else:
d = datetime.strptime(v, "%Y%m%d").date()
return d


def parse_api_week(value: Union[str, int, float, None]) -> Optional[date]:
Expand All @@ -23,6 +27,8 @@ def parse_api_date_or_week(value: Union[str, int, float, None]) -> Optional[date
v = str(value)
if len(v) == 6:
d = Week.fromstring(v).startdate()
elif len(v) == 10: # yyyy-mm-dd
d = datetime.strptime(v, "%Y-%m-%d").date()
else:
d = datetime.strptime(v, "%Y%m%d").date()
return d
Expand Down
22 changes: 16 additions & 6 deletions epidatpy/request.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,9 +137,9 @@ def df(
df = DataFrame(rows, columns=columns or None)

data_types: Dict[str, Any] = {}
time_fields: List[str] = []
time_fields: List[EpidataFieldInfo] = []
for info in self.meta:
if not pred(info.name) or df[info.name].isnull().all():
if not pred(info.name):
continue
if info.type == EpidataFieldType.bool:
data_types[info.name] = bool
Expand All @@ -154,17 +154,27 @@ def df(
EpidataFieldType.epiweek,
EpidataFieldType.date_or_epiweek,
):
data_types[info.name] = "Int64"
time_fields.append(info.name)
data_types[info.name] = "string"
time_fields.append(info)
elif info.type == EpidataFieldType.float:
data_types[info.name] = "Float64"
else:
data_types[info.name] = "string"
if data_types:
df = df.astype(data_types)
if not disable_date_parsing:
for field in time_fields:
df[field] = to_datetime(df[field], format="%Y%m%d", errors="ignore")
for info in time_fields:
if info.type == EpidataFieldType.epiweek:
continue
try:
df[info.name] = to_datetime(df[info.name], format="%Y-%m-%d")
continue
except ValueError:
pass
try:
df[info.name] = to_datetime(df[info.name], format="%Y%m%d")
except ValueError:
pass
return df


Expand Down
Loading
Loading