Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -150,6 +150,7 @@
* [Decision Tree](https://github.com/bellshade/Python/blob/main/implementation/artificial_intelligence/decision_tree.py)
* [Gradient Descent](https://github.com/bellshade/Python/blob/main/implementation/artificial_intelligence/gradient_descent.py)
* [K Means Clutser](https://github.com/bellshade/Python/blob/main/implementation/artificial_intelligence/k_means_clutser.py)
* [K Nearest Neighbour](https://github.com/bellshade/Python/blob/main/implementation/artificial_intelligence/k_nearest_neighbour.py)
* [Linear Regression](https://github.com/bellshade/Python/blob/main/implementation/artificial_intelligence/linear_regression.py)
* [Logistic Regression](https://github.com/bellshade/Python/blob/main/implementation/artificial_intelligence/logistic_regression.py)
* [Lstm](https://github.com/bellshade/Python/blob/main/implementation/artificial_intelligence/lstm.py)
Expand Down
60 changes: 60 additions & 0 deletions implementation/artificial_intelligence/k_nearest_neighbour.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# algoritma ini adalah merupakan algoritma machine learning
# sederhana dan mudah diterapkan yang dapat digunakan untuk
# menyelesaikan masalah klasifikasi dan regresi
# algoritma KNN menggunakan sejumlah paramater
# yang fleksibel, dan jumlah parameter seringkali bertambah
# seiring data yang semakin banyak.
# algoritma KNN juga bersifat lazy learning, yang artinya tidak
# menggunaakan titik data training untuk membuat model. singkatnya
# algoritma ini tidak ada fase training, kalaupun juga sangat minim.
# referensi
# - https://www.ibm.com/topics/knn

from collections import Counter

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split

data = datasets.load_iris()

X = np.array(data["data"])
y = np.array(data["target"])
classes = data["target_names"]

X_train, X_train, y_train, y_test = train_test_split(X, y)


def euclidean_distance(a, b):
"""
memberikan jarak antara dua euclidean
>>> euclidean_distance([0, 0], [3, 4])
5.0
"""
return np.linalg.norm(np.array(a) - np.array(b))


def klasifikasi(train_data, train_target, classes, point, k=5):
"""
mengklasifikasikan titik algoritma menggunakan algortima
KNN, k titik terdekat ditemukan (diurutkan dalam urutan
menaik jarak euclidean)

>>> X_train = [[0, 0], [1, 0], [0, 1], [0.5, 0.5], [3, 3], [2, 3], [3, 2]]
>>> y_train = [0, 0, 0, 0, 1, 1, 1]
>>> classes = ['A','B']; point = [1.2,1.2]
>>> klasifikasi(X_train, y_train, classes, point)
'A'
"""
data = zip(train_data, train_target)
jarak = []
for data_point in data:
jarak_1 = euclidean_distance(data_point[0], point)
jarak.append((jarak_1, data_point[1]))
votes = [i[1] for i in sorted(jarak)[:k]]
hasil = Counter(votes).most_common(1)[0][0]
return classes[hasil]


if __name__ == "__main__":
print(klasifikasi(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))