Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ import org.apache.spark.sql.catalyst.expressions.{Expression, Murmur3HashFunctio
import org.apache.spark.sql.catalyst.plans.physical.KeyGroupedPartitioning
import org.apache.spark.sql.connector.read.{HasPartitionKey, InputPartition}
import org.apache.spark.sql.types.{DataType, StructField, StructType}
import org.apache.spark.util.NonFateSharingCache

/**
* Wraps the [[InternalRow]] with the corresponding [[DataType]] to make it comparable with
Expand All @@ -34,9 +35,10 @@ import org.apache.spark.sql.types.{DataType, StructField, StructType}
* @param dataTypes the data types for the row
*/
class InternalRowComparableWrapper(val row: InternalRow, val dataTypes: Seq[DataType]) {
import InternalRowComparableWrapper._

private val structType = StructType(dataTypes.map(t => StructField("f", t)))
private val ordering = RowOrdering.createNaturalAscendingOrdering(dataTypes)
private val structType = structTypeCache.get(dataTypes)
private val ordering = orderingCache.get(dataTypes)

override def hashCode(): Int = Murmur3HashFunction.hash(row, structType, 42L).toInt

Expand All @@ -53,6 +55,21 @@ class InternalRowComparableWrapper(val row: InternalRow, val dataTypes: Seq[Data
}

object InternalRowComparableWrapper {
private final val MAX_CACHE_ENTRIES = 1024
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

1024 should be sufficient, it could be a SQL configuration though.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Makes sense to me to have a config, though not familiar with spark preference for these things.


private val orderingCache = {
val loadFunc = (dataTypes: Seq[DataType]) => {
RowOrdering.createNaturalAscendingOrdering(dataTypes)
}
NonFateSharingCache(loadFunc, MAX_CACHE_ENTRIES)
}

private val structTypeCache = {
val loadFunc = (dataTypes: Seq[DataType]) => {
StructType(dataTypes.map(t => StructField("f", t)))
}
NonFateSharingCache(loadFunc, MAX_CACHE_ENTRIES)
}

def apply(
partition: InputPartition with HasPartitionKey,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.catalyst.util

import org.apache.spark.benchmark.{Benchmark, BenchmarkBase}
import org.apache.spark.sql.catalyst.expressions.Literal
import org.apache.spark.sql.catalyst.plans.physical.KeyGroupedPartitioning
import org.apache.spark.sql.connector.catalog.PartitionInternalRow
import org.apache.spark.sql.types.IntegerType

/**
* Benchmark for [[InternalRowComparableWrapper]].
* To run this benchmark:
* {{{
* 1. without sbt:
* bin/spark-submit --class <this class> --jars <spark core test jar> <spark catalyst test jar>
* 2. build/sbt "catalyst/Test/runMain <this class>"
* 3. generate result:
* SPARK_GENERATE_BENCHMARK_FILES=1 build/sbt "catalyst/Test/runMain <this class>"
* Results will be written to "benchmarks/InternalRowComparableWrapperBenchmark-results.txt".
* }}}
*/
object InternalRowComparableWrapperBenchmark extends BenchmarkBase {

private def constructAndRunBenchmark(): Unit = {
val partitionNum = 200_000
val bucketNum = 4096
val day = 20240401
val partitions = (0 until partitionNum).map { i =>
val bucketId = i % bucketNum
PartitionInternalRow.apply(Array(day, bucketId));
}
val benchmark = new Benchmark("internal row comparable wrapper", partitionNum, output = output)

benchmark.addCase("toSet") { _ =>
val distinct = partitions
.map(new InternalRowComparableWrapper(_, Seq(IntegerType, IntegerType)))
.toSet
assert(distinct.size == bucketNum)
}

benchmark.addCase("mergePartitions") { _ =>
// just to mock the data types
val expressions = (Seq(Literal(day, IntegerType), Literal(0, IntegerType)))

val leftPartitioning = KeyGroupedPartitioning(expressions, bucketNum, partitions)
val rightPartitioning = KeyGroupedPartitioning(expressions, bucketNum, partitions)
val merged = InternalRowComparableWrapper.mergePartitions(
leftPartitioning, rightPartitioning, expressions)
assert(merged.size == bucketNum)
}

benchmark.run()
}

override def runBenchmarkSuite(mainArgs: Array[String]): Unit = {
constructAndRunBenchmark()
}
}