-
Notifications
You must be signed in to change notification settings - Fork 246
Closed
Labels
enhancementNew feature or requestNew feature or request
Description
What is the problem the feature request solves?
The native_datafusion parquet scanner throws the following error when reading parquet files on S3:
org.apache.comet.CometNativeException: External: Generic S3 error: Error performing PUT http://169.254.169.254/latest/api/token in 1.79000475s, after 10 retries, max_retries: 10, retry_timeout: 180s - HTTP error: error sending request
at org.apache.comet.Native.executePlan(Native Method)
at org.apache.comet.CometExecIterator.$anonfun$getNextBatch$2(CometExecIterator.scala:150)
at org.apache.comet.CometExecIterator.$anonfun$getNextBatch$2$adapted(CometExecIterator.scala:149)
at org.apache.comet.vector.NativeUtil.getNextBatch(NativeUtil.scala:157)
at org.apache.comet.CometExecIterator.$anonfun$getNextBatch$1(CometExecIterator.scala:149)
at org.apache.comet.Tracing$.withTrace(Tracing.scala:31)
at org.apache.comet.CometExecIterator.getNextBatch(CometExecIterator.scala:147)
at org.apache.comet.CometExecIterator.hasNext(CometExecIterator.scala:170)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:893)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:893)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:367)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:331)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)
at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:166)
at org.apache.spark.scheduler.Task.run(Task.scala:141)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620)
at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)
at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635)
at java.base/java.lang.Thread.run(Thread.java:840)
The error message suggests that the S3 client is retrieving token on EC2 instance, even though I am not running comet on EC2.
It is also quite common to configure credentials for accessing AWS S3 by specifying Hadoop configurations, for instance:
spark = (SparkSession.builder
.config("spark.hadoop.fs.s3a.aws.credentials.provider", "org.apache.hadoop.fs.s3a.AnonymousAWSCredentialsProvider")
.getOrCreate())Currently there's no mechanism for using credentials configured as Hadoop S3 configurations when reading S3 using the native datafusion parquet reader. We'd better build some compatibility layer to recognize Hadoop S3 configurations in native parquet reader for compatibility with Vanilla Spark.
Describe the potential solution
No response
Additional context
No response
Metadata
Metadata
Assignees
Labels
enhancementNew feature or requestNew feature or request