Skip to content

Add refinedType to object ClassManifest #2

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 23, 2012

Conversation

phaller
Copy link

@phaller phaller commented Feb 23, 2012

No description provided.

adriaanm added a commit that referenced this pull request Feb 23, 2012
Add refinedType to object ClassManifest
@adriaanm adriaanm merged commit d09fd02 into adriaanm:topic/virt Feb 23, 2012
adriaanm pushed a commit that referenced this pull request May 24, 2012
Yin and yang would be pleased: A fix in two parts.

1. Use the name of the imported symbol, rather than the alias, in the generated `Select(qual, name)` tree.
2. Do the opposite in `isQualifyingImplicit`, which performs one part of the shadowing check.

But there is still work to do. The second part of the shadowing check, `nonImplicitSynonymInScope`,
fails to notice this case (irrespective of aliased imports).

  // Expecting shadowing #2. Alas, none is cast!
  object Test1 {
    object A { implicit val x: Int = 1 }
    import A.x
    def x: Int = 0
    implicitly[Int]
  }

I'm hitching the residual problem to SI-4270's wagon.
adriaanm pushed a commit that referenced this pull request Jul 9, 2012
- fixed the AnyRef linking (SI-5780)
- added tooltips to implicit conversions in diagrams
- fixed the intermittent dot error where node images would be left out
(dot is not reliable at all -- with all the mechanisms in place to fail
gracefully, we still get dot errors crawling their way into diagrams -
and that usually means no diagram generated, which is the most
appropriate way to fail, I think...)
adriaanm pushed a commit that referenced this pull request Jul 14, 2012
adriaanm pushed a commit that referenced this pull request Aug 8, 2012
…ion-pull-request

Ultimate reflection pull request #2
adriaanm pushed a commit that referenced this pull request Oct 2, 2012
Turns importer caches into fully weak hash maps, and also applies
manual cleanup to toolboxes every time they are used.

It's not enough, because reflection-mem-typecheck test is still leaking
at a rate of ~100kb per typecheck, but it's much better than it was before.
We'll fix the rest later, after 2.10.0-final.

For more information, see https://issues.scala-lang.org/browse/SI-6412 and
http://groups.google.com/group/scala-internals/browse_thread/thread/eabcf3d406dab8b2

In comparison with scala@b403c1d,
the original commit that implemented the fix, this one doesn't crash tests.
The problem with the original commit was that it called tryFixup() before
updating the cache, leading to stack overflows.
adriaanm pushed a commit that referenced this pull request Oct 2, 2012
SI-6412 alleviates leaks in toolboxes, attempt #2
adriaanm pushed a commit that referenced this pull request Nov 13, 2013
When an application of a blackbox macro still has undetermined type
parameters after Scala’s type inference algorithm has finished working,
these type parameters are inferred forcedly, in exactly the same manner
as type inference happens for normal methods.

This makes it impossible for blackbox macros to influence type inference,
prohibiting fundep materialization.
adriaanm pushed a commit that referenced this pull request Dec 19, 2013
While fixing the problem with the order of typechecks for whitebox expansions,
I realized that we’re doing redundant work when expanding blackbox macros.
Concretely, typechecking blackbox expansions looked as follows:

  val expanded1 = atPos(enclosingMacroPosition.focus)(Typed(expanded0, TypeTree(innerPt)))
  val expanded2 = typecheck("blackbox typecheck #1", expanded1, innerPt)
  typecheck("blackbox typecheck #2", expanded1, outerPt)

Or, if we reformulate it using quasiquotes (temporarily not taking
positions into account, since they aren’t important here):

  val expanded2 = typed(q”$expanded: $innerPt”, innerPt)
  typed(expanded2, outerPt)

In this formulation, it becomes apparent that the first typecheck is
redundant. If something is ascribed with some type, then typechecking
the ascription against that type does nothing useful.

This is also highlights one of the reasons why it would be really nice
to have quasiquotes used in the compiler. With them, it’s easy to notice
things that would otherwise remain buried behind swaths of boilerplate.
adriaanm pushed a commit that referenced this pull request Feb 10, 2014
Swathes of important logic are duplicated between `findMember`
and `findMembers` after they separated on grounds of irreconcilable
differences about how fast they should run:

    d905558 Variation #10 to optimze findMember
    fcb0c01 Attempt #9 to opimize findMember.
    71d2ceb Attempt #8 to opimize findMember.
    77e5692 Attempty #7 to optimize findMember
    275115e Fixing problem that caused fingerprints to fail in
    e94252e Attemmpt #6 to optimize findMember
    73e61b8 Attempt #5 to optimize findMember.
    04f0b65 Attempt #4 to optimize findMember
    0e3c70f Attempt #3 to optimize findMember
    41f4497 Attempt #2 to optimize findMember
    1a73aa0 Attempt #1 to optimize findMember

This didn't actually bear fruit, and the intervening years have
seen the implementations drift.

Now is the time to reunite them under the banner of `FindMemberBase`.

Each has a separate subclass to customise the behaviour. This is
primarily used by `findMember` to cache member types and to assemble
the resulting list of symbols in an low-allocation manner.

While there I have introduced some polymorphic calls, the call sites
are only bi-morphic, and our typical pattern of compilation involves
far more `findMember` calls, so I expect that JIT will keep the
virtual call cost to an absolute minimum.

Test results have been updated now that `findMembers` correctly
excludes constructors and doesn't inherit privates.

Coming up next: we can actually fix SI-7475!
adriaanm pushed a commit that referenced this pull request Feb 18, 2014
[Parts of this patch and some of the commentary are from @paulp]

This took me so long to figure out I can't even tell you. Partly because
there were two different bugs, one which only arose for trait forwarders
and one for mirror class forwarders, and every time I'd make one set
of tests work another set would start failing. The runtime failures
associated with these bugs were fairly well hidden because you usually
have to go through java to encounter them: scala doesn't pay that much
attention to generic signatures, so they can be wrong and scala might still
generate correct code. But java is not so lucky.

Bug #1)

During mixin composition, classes which extend traits receive forwarders
to the implementations. An attempt was made to give these the correct
info (in method "cloneBeforeErasure") but it was prone to giving
the wrong answer, because: the key attribute which the forwarder
must capture is what the underlying method will erase to *where the
implementation is*, not how it appears to the class which contains it.
That means the signature of the forwarder must be no more precise than
the signature of the inherited implementation unless additional measures
will be taken.

This subtle difference will put on an unsubtle show for you in test
run/t3452.scala.

    trait C[T]
    trait Search[M] { def search(input: M): C[Int] = null }
    object StringSearch extends Search[String] { }
    StringSearch.search("test");  // java
    // java.lang.NoSuchMethodError: StringSearch.search(Ljava/lang/String;)LC;

The principled thing to do here would be to create a pair of
methods in the host class: a mixin forwarder with the erased
signature `(String)C[Int]`, and a bridge method with the same
erased signature as the trait interface facet.

But, this turns out to be pretty hard to retrofit onto the
current setup of Mixin and Erasure, mostly due to the fact
that mixin happens after erasure which has already taken
care of bridging.

For a future, release, we should try to move all bridging
after mixin, and pursue this approach. But for now, what can
we do about `LinkageError`s for Java clients?

This commit simply checks if the pre-erasure method signature
that we generate for the trait forward erases identically to
that of the interface method. If so, we can be precise. If not,
we emit the erased signature as the generic signature.

Bug #2) The same principle is at work, at a different location.
During genjvm, objects without declared companion classes
are given static forwarders in the corresponding class, e.g.

    object Foo { def bar = 5 }

which creates these classes (taking minor liberties):

    class Foo$ { static val MODULE$ = new Foo$ ; def bar = 5 }
    class Foo  { static def bar = Foo$.MODULE$.bar }

In generating these, genjvm circumvented the usual process whereby one
creates a symbol and gives it an info, preferring to target the bytecode
directly. However generic signatures are calculated from symbol info
(in this case reusing the info from the module class.) Lacking even the
attempt which was being made in mixin to "clone before erasure", we
would have runtime failures of this kind:

    abstract class Foo {
      type T
      def f(x: T): List[T] = List()
    }
    object Bar extends Foo { type T = String }
    Bar.f("");    // java
    // java.lang.NoSuchMethodError: Bar.f(Ljava/lang/String;)Lscala/collection/immutable/List;

Before/after this commit:

    <   signature                                     f  (Ljava/lang/String;)Lscala/collection/immutable/List<Ljava/lang/String;>;
    ---
    >   signature                                     f  (Ljava/lang/Object;)Lscala/collection/immutable/List<Ljava/lang/Object;>;

This takes the warning count for compiling collections under
`-Ycheck:jvm` from 1521 to 26.
adriaanm pushed a commit that referenced this pull request Feb 20, 2014
As per discussion at https://groups.google.com/forum/#!topic/scala-internals/nf_ooEBn6-k,
this commit introduces the new c.enclosingOwner API that is going to serve
two purposes: 1) provide a better controlled alternative to c.enclosingTree,
2) enable low-level tinkering with owner chains without having to cast
to compiler internals.

This solution is not ideal, because: 1) symbols are much more than
I would like to expose about enclosing lexical contexts (after the
aforementioned discussion I’m no longer completely sure whether exposing
nothing is the right thing to do, but exposing symbol completers is definitely
something that should be avoided), 2) we shouldn’t have to do that
low-level stuff in the first place.

However, let’s face the facts. This change represents both an improvement
over the state of the art wrt #1 and a long-awaited capability wrt #2.
I think this pretty much warrants its place in trunk in the spirit of
gradual, evolutionary development of reflection API.
adriaanm pushed a commit that referenced this pull request Mar 27, 2014
blueprint CSS layout modified to 18-column from 24-column, spacing between paragraphs reduced by 1em
adriaanm pushed a commit that referenced this pull request Apr 13, 2015
Under `-Ydelambdafy:method`, a public, static accessor method is
created to expose the private method containing the body of the
lambda.

Currently this accessor method has its parameters in the same order
structure as those of the lambda body method.

What is this order? There are three categories of parameters:

  1. lambda parameters
  2. captured parameters (added by lambdalift)
  3. self parameters (added to lambda bodies that end up in trait
     impl classes by mixin, and added unconditionally to the static
     accessor method.)

These are currently emitted in order #3, #1, #2.

Here are examples of the current behaviour:

BEFORE (trait):

```
% cat sandbox/test.scala && scalac-hash v2.11.5 -Ydelambdafy:method sandbox/test.scala && javap -private -classpath . 'Test$class'
trait Member; class Capture; trait LambdaParam
trait Test {
  def member: Member
  def foo {
    val local = new Capture
    (arg: LambdaParam) => "" + arg + member + local
  }
}
Compiled from "test.scala"
public abstract class Test$class {
  public static void foo(Test);
  private static final java.lang.String $anonfun$1(Test, LambdaParam, Capture);
  public static void $init$(Test);
  public static final java.lang.String accessor$1(Test, LambdaParam, Capture);
}
```

BEFORE (class):

```
% cat sandbox/test.scala && scalac-hash v2.11.5 -Ydelambdafy:method sandbox/test.scala && javap -private -classpath . Test
trait Member; class Capture; trait LambdaParam
abstract class Test {
  def member: Member
  def foo {
    val local = new Capture
    (arg: LambdaParam) => "" + arg + member + local
  }
}
Compiled from "test.scala"
public abstract class Test {
  public abstract Member member();
  public void foo();
  private final java.lang.String $anonfun$1(LambdaParam, Capture);
  public Test();
  public static final java.lang.String accessor$1(Test, LambdaParam, Capture);
}
```

Contrasting the class case with Java:

```
% cat sandbox/Test.java && javac -d . sandbox/Test.java && javap -private -classpath . Test
public abstract class Test {
  public static class Member {};
  public static class Capture {};
  public static class LambaParam {};
  public static interface I {
    public abstract Object c(LambaParam arg);
  }
  public abstract Member member();
  public void test() {
    Capture local = new Capture();
    I i1 = (LambaParam arg) -> "" + member() + local;
  }
}

Compiled from "Test.java"
public abstract class Test {
  public Test();
  public abstract Test$Member member();
  public void test();
  private java.lang.Object lambda$test$0(Test$Capture, Test$LambaParam);
}
```

We can see that in Java 8 lambda parameters come after captures. If we
want to use Java's LambdaMetafactory to spin up our anoymous FunctionN
subclasses on the fly, our ordering must change.

I can see three options for change:

  1. Adjust `LambdaLift` to always prepend captured parameters,
     rather than appending them. I think we could leave `Mixin` as
     it is, it already prepends the self parameter. This would result
     a parameter ordering, in terms of the list above: #3, #2, #1.
  2. More conservatively, do this just for methods known to hold
     lambda bodies. This might avoid needlessly breaking code that
     has come to depend on our binary encoding.
  3. Adjust the parameters of the accessor method only. The body
     of this method can permute params before calling the lambda
     body method.

This commit implements option #2.

In also prototyped #1, and found it worked so long as I limited it to
non-constructors, to sidestep the need to make corresponding
changes elsewhere in the compiler to avoid the crasher shown
in the enclosed test case, which was minimized from a bootstrap
failure from an earlier a version of this patch.

We would need to defer option #1 to 2.12 in any case, as some of
these lifted methods are publicied by the optimizer, and we must
leave the signatures alone to comply with MiMa.

I've included a test that shows this in all in action. However, that
is currently disabled, as we don't have a partest category for tests
that require Java 8.
adriaanm pushed a commit that referenced this pull request Aug 24, 2015
The log messages intented to chronicle implicit search were
always being filtered out by virtue of the fact that the the tree
passed to `printTyping` was already typed, (e.g. with an implicit
MethodType.)

This commit enabled printing in this case, although it still
filters out trees that are deemed unfit for typer tracing,
such as `()`. In the context of implicit search, this happens
to filter out the noise of:

```
|    |    |    [search #2] start `()`, searching for adaptation to pt=Unit => Foo[Int,Int] (silent: value <local Test> in Test) implicits disabled
|    |    |    [search #3] start `()`, searching for adaptation to pt=(=> Unit) => Foo[Int,Int] (silent: value <local Test> in Test) implicits disabled
|    |    |    \-> <error>
```

... which I think is desirable.

The motivation for this fix was to better display the interaction
between implicit search and type inference. For instance:

```
class Foo[A, B]
class Test {
  implicit val f: Foo[Int, String] = ???
  def t[A, B](a: A)(implicit f: Foo[A, B]) = ???
  t(1)
}
```

````
% scalac -Ytyper-debug sandbox/instantiate.scala
...
|    |-- t(1) BYVALmode-EXPRmode (site: value <local Test> in Test)
|    |    |-- t BYVALmode-EXPRmode-FUNmode-POLYmode (silent: value <local Test> in Test)
|    |    |    [adapt] [A, B](a: A)(implicit f: Foo[A,B])Nothing adapted to [A, B](a: A)(implicit f: Foo[A,B])Nothing
|    |    |    \-> (a: A)(implicit f: Foo[A,B])Nothing
|    |    |-- 1 BYVALmode-EXPRmode-POLYmode (site: value <local Test> in Test)
|    |    |    \-> Int(1)
|    |    solving for (A: ?A, B: ?B)
|    |    solving for (B: ?B)
|    |    [search #1] start `[A, B](a: A)(implicit f: Foo[A,B])Nothing` inferring type B, searching for adaptation to pt=Foo[Int,B] (silent: value <local Test> in Test) implicits disabled
|    |    [search #1] considering f
|    |    [adapt] f adapted to => Foo[Int,String] based on pt Foo[Int,B]
|    |    [search #1] solve tvars=?B, tvars.constr= >: String <: String
|    |    solving for (B: ?B)
|    |    [search #1] success inferred value of type Foo[Int,=?String] is SearchResult(Test.this.f, TreeTypeSubstituter(List(type B),List(String)))
|    |    |-- [A, B](a: A)(implicit f: Foo[A,B])Nothing BYVALmode-EXPRmode (site: value <local Test> in Test)
|    |    |    \-> Nothing
|    |    [adapt] [A, B](a: A)(implicit f: Foo[A,B])Nothing adapted to [A, B](a: A)(implicit f: Foo[A,B])Nothing
|    |    \-> Nothing
```
adriaanm pushed a commit that referenced this pull request Aug 22, 2016
Top level modules in Scala currently desugar as:

```
class C; object O extends C { toString }
```

```
public final class O$ extends C {
  public static final O$ MODULE$;

  public static {};
    Code:
       0: new           #2                  // class O$
       3: invokespecial #12                 // Method "<init>":()V
       6: return

  private O$();
    Code:
       0: aload_0
       1: invokespecial #13                 // Method C."<init>":()V
       4: aload_0
       5: putstatic     #15                 // Field MODULE$:LO$;
       8: aload_0
       9: invokevirtual #21                 // Method java/lang/Object.toString:()Ljava/lang/String;
      12: pop
      13: return
}
```

The static initalizer `<clinit>` calls the constructor `<init>`, which
invokes superclass constructor, assigns `MODULE$= this`, and then runs
the remainder of the object's constructor (`toString` in the example
above.)

It turns out that this relies on a bug in the JVM's verifier: assignment to a
static final must occur lexically within the <clinit>, not from within `<init>`
(even if the latter is happens to be called by the former).

I'd like to move the assignment to <clinit> but that would
change behaviour of "benign" cyclic references between modules.

Example:

```
package p1; class CC { def foo = O.bar}; object O {new CC().foo; def bar = println(1)};

// Exiting paste mode, now interpreting.

scala> p1.O
1
```

This relies on the way that we assign MODULE$ field after the super class constructors
are finished, but before the rest of the module constructor is called.

Instead, this commit removes the ACC_FINAL bit from the field. It actually wasn't
behaving as final at all, precisely the issue that the stricter verifier
now alerts us to.

```
scala> :paste -raw
// Entering paste mode (ctrl-D to finish)

package p1; object O

// Exiting paste mode, now interpreting.

scala> val O1 = p1.O
O1: p1.O.type = p1.O$@ee7d9f1

scala> scala.reflect.ensureAccessible(p1.O.getClass.getDeclaredConstructor()).newInstance()
res0: p1.O.type = p1.O$@64cee07

scala> O1 eq p1.O
res1: Boolean = false
```

We will still achieve safe publication of the assignment to other threads
by virtue of the fact that `<clinit>` is executed within the scope of
an initlization lock, as specified by:

  https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.5

Fixes scala/scala-dev#SD-194
adriaanm pushed a commit that referenced this pull request Oct 18, 2016
Manually tested with:

```
% cat sandbox/test.scala
package p {
  object X { def f(i: Int) = ??? ; def f(s: String) = ??? }
  object Main {
    val res = X.f(3.14)
  }
}

% qscalac  -Ytyper-debug sandbox/test.scala
|-- p EXPRmode-POLYmode-QUALmode (site: package <root>)
|    \-> p.type
|-- object X BYVALmode-EXPRmode (site: package p)
|    |-- super EXPRmode-POLYmode-QUALmode (silent: <init> in X)
|    |    |-- this EXPRmode (silent: <init> in X)
|    |    |    \-> p.X.type
|    |    \-> p.X.type
|    |-- def f BYVALmode-EXPRmode (site: object X)
|    |    |-- $qmark$qmark$qmark EXPRmode (site: method f in X)
|    |    |    \-> Nothing
|    |    |-- Int TYPEmode (site: value i in X)
|    |    |    \-> Int
|    |    |-- Int TYPEmode (site: value i in X)
|    |    |    \-> Int
|    |    \-> [def f] (i: Int)Nothing
|    |-- def f BYVALmode-EXPRmode (site: object X)
|    |    |-- $qmark$qmark$qmark EXPRmode (site: method f in X)
|    |    |    \-> Nothing
|    |    |-- String TYPEmode (site: value s in X)
|    |    |    [adapt] String is now a TypeTree(String)
|    |    |    \-> String
|    |    |-- String TYPEmode (site: value s in X)
|    |    |    [adapt] String is now a TypeTree(String)
|    |    |    \-> String
|    |    \-> [def f] (s: String)Nothing
|    \-> [object X] p.X.type
|-- object Main BYVALmode-EXPRmode (site: package p)
|    |-- X.f(3.14) EXPRmode (site: value res  in Main)
|    |    |-- X.f BYVALmode-EXPRmode-FUNmode-POLYmode (silent: value res  in Main)
|    |    |    |-- X EXPRmode-POLYmode-QUALmode (silent: value res  in Main)
|    |    |    |    \-> p.X.type
|    |    |    \-> (s: String)Nothing <and> (i: Int)Nothing
|    |    |-- 3.14 BYVALmode-EXPRmode (silent: value res  in Main)
|    |    |    \-> Double(3.14)
|    |    [search #1] start `<?>`, searching for adaptation to pt=Double => String (silent: value res  in Main) implicits disabled
|    |    [search #2] start `<?>`, searching for adaptation to pt=(=> Double) => String (silent: value res  in Main) implicits disabled
|    |    [search #3] start `<?>`, searching for adaptation to pt=Double => Int (silent: value res  in Main) implicits disabled
|    |    1 implicits in companion scope
|    |    [search #4] start `<?>`, searching for adaptation to pt=(=> Double) => Int (silent: value res  in Main) implicits disabled
|    |    1 implicits in companion scope
|    |    second try: <error> and 3.14
|    |    [search #5] start `p.X.type`, searching for adaptation to pt=p.X.type => ?{def f(x$1: ? >: Double(3.14)): ?} (silent: value res  in Main) implicits disabled
|    |    [search #6] start `p.X.type`, searching for adaptation to pt=(=> p.X.type) => ?{def f(x$1: ? >: Double(3.14)): ?} (silent: value res  in Main) implicits disabled
sandbox/test.scala:4: error: overloaded method value f with alternatives:
  (s: String)Nothing <and>
  (i: Int)Nothing
 cannot be applied to (Double)
    val res = X.f(3.14)
                ^
```
adriaanm pushed a commit that referenced this pull request Mar 31, 2017
The following commit message is a squash of several commit messages.

- This is the 1st commit message:

Add position to stub error messages

Stub errors happen when we've started the initialization of a symbol but
key information of this symbol is missing (the information cannot be
found in any entry of the classpath not sources).

When this error happens, we better have a good error message with a
position to the place where the stub error came from. This commit goes
into this direction by adding a `pos` value to `StubSymbol` and filling
it in in all the use sites (especifically `UnPickler`).

This commit also changes some tests that test stub errors-related
issues. Concretely, `t6440` is using special Partest infrastructure and
doens't pretty print the position, while `t5148` which uses the
conventional infrastructure does. Hence the difference in the changes
for both tests.

- This is the commit message #2:

Add partest infrastructure to test stub errors

`StubErrorMessageTest` is the friend I introduce in this commit to help
state stub errors. The strategy to test them is easy and builds upon
previous concepts: we reuse `StoreReporterDirectTest` and add some
methods that will compile the code and simulate a missing classpath
entry by removing the class files from the class directory (the folder
where Scalac compiles to).

This first iteration allow us to programmatically check that stub errors
are emitted under certain conditions.

- This is the commit message #3:

Improve contents of stub error message

This commit does three things:

* Keep track of completing symbol while unpickling

  First, it removes the previous `symbolOnCompletion` definition to be
  more restrictive/clear and use only positions, since only positions are
  used to report the error (the rest of the information comes from the
  context of the `UnPickler`).

  Second, it adds a new variable called `lazyCompletingSymbol` that is
  responsible for keeping a reference to the symbol that produces the stub
  error. This symbol will usually (always?) come from the classpath
  entries and therefore we don't have its position (that's why we keep
  track of `symbolOnCompletion` as well). This is the one that we have to
  explicitly use in the stub error message, the culprit so to speak.

  Aside from these two changes, this commit modifies the existing tests
  that are affected by the change in the error message, which is more
  precise now, and adds new tests for stub errors that happen in complex
  inner cases and in return type of `MethodType`.

* Check that order of initialization is correct

  With the changes introduced previously to keep track of position of
  symbols coming from source files, we may ask ourselves: is this going to
  work always? What happens if two symbols the initialization of two
  symbols is intermingled and the stub error message gets the wrong
  position?

  This commit adds a test case and modifications to the test
  infrastructure to double check empirically that this does not happen.
  Usually, this interaction in symbol initialization won't happen because
  the `UnPickler` will lazily load all the buckets necessary for a symbol
  to be truly initialized, with the pertinent addresses from which this
  information has to be deserialized. This ensures that this operation is
  atomic and no other symbol initialization can happen in the meantime.

  Even though the previous paragraph is the feeling I got from reading the
  sources, this commit creates a test to double-check it. My attempt to be
  better safe than sorry.

* Improve contents of the stub error message

  This commit modifies the format of the previous stub error message by
  being more precise in its formulation. It follows the structured format:

  ```
  s"""|Symbol '${name.nameKind} ${owner.fullName}.$name' is missing from the classpath.
      |This symbol is required by '${lazyCompletingSymbol.kindString} ${lazyCompletingSymbol.fullName}'.
  ```

  This format has the advantage that is more readable and explicit on
  what's happening. First, we report what is missing. Then, why it was
  required. Hopefully, people working on direct dependencies will find the
  new message friendlier.

Having a good test suite to check the previously added code is
important. This commit checks that stub errors happen in presence of
well-known and widely used Scala features. These include:

* Higher kinded types.
* Type definitions.
* Inheritance and subclasses.
* Typeclasses and implicits.

- This is the commit message #4:

Use `lastTreeToTyper` to get better positions

The previous strategy to get the last user-defined position for knowing
what was the root cause (the trigger) of stub errors relied on
instrumenting `def info`.

This instrumentation, while easy to implement, is inefficient since we
register the positions for symbols that are already completed.

However, we cannot do it only for uncompleted symbols (!hasCompleteInfo)
because the positions won't be correct anymore -- definitions using stub
symbols (val b = new B) are for the compiler completed, but their use
throws stub errors. This means that if we initialize symbols between a
definition and its use, we'll use their positions instead of the
position of `b`.

To work around this we use `lastTreeToTyper`. We assume that stub errors
will be thrown by Typer at soonest.

The benefit of this approach is better error messages. The positions
used in them are now as concrete as possible since they point to the
exact tree that **uses** a symbol, instead of the one that **defines**
it. Have a look at `StubErrorComplexInnerClass` for an example.

This commit removes the previous infrastructure and replaces it by the
new one. It also removes the fields positions from the subclasses of
`StubSymbol`s.

- This is the commit message #5:

Keep track of completing symbols

Make sure that cycles don't happen by keeping track of all the
symbols that are being completed by `completeInternal`. Stub errors only
need the last completing symbols, but the whole stack of symbols may
be useful to reporting other error like cyclic initialization issues.

I've added this per Jason's suggestion. I've implemented with a list
because `remove` in an array buffer is linear. Array was not an option
because I would need to resize it myself. I think that even though list
is not as efficient memory-wise, it probably doesn't matter since the
stack will usually be small.

- This is the commit message #6:

Remove `isPackage` from `newStubSymbol`

Remove `isPackage` since in 2.12.x its value is not used.
adriaanm pushed a commit that referenced this pull request Apr 3, 2017
The following commit message is a squash of several commit messages.

- This is the 1st commit message:

Add position to stub error messages

Stub errors happen when we've started the initialization of a symbol but
key information of this symbol is missing (the information cannot be
found in any entry of the classpath not sources).

When this error happens, we better have a good error message with a
position to the place where the stub error came from. This commit goes
into this direction by adding a `pos` value to `StubSymbol` and filling
it in in all the use sites (especifically `UnPickler`).

This commit also changes some tests that test stub errors-related
issues. Concretely, `t6440` is using special Partest infrastructure and
doens't pretty print the position, while `t5148` which uses the
conventional infrastructure does. Hence the difference in the changes
for both tests.

- This is the commit message #2:

Add partest infrastructure to test stub errors

`StubErrorMessageTest` is the friend I introduce in this commit to help
state stub errors. The strategy to test them is easy and builds upon
previous concepts: we reuse `StoreReporterDirectTest` and add some
methods that will compile the code and simulate a missing classpath
entry by removing the class files from the class directory (the folder
where Scalac compiles to).

This first iteration allow us to programmatically check that stub errors
are emitted under certain conditions.

- This is the commit message #3:

Improve contents of stub error message

This commit does three things:

* Keep track of completing symbol while unpickling

  First, it removes the previous `symbolOnCompletion` definition to be
  more restrictive/clear and use only positions, since only positions are
  used to report the error (the rest of the information comes from the
  context of the `UnPickler`).

  Second, it adds a new variable called `lazyCompletingSymbol` that is
  responsible for keeping a reference to the symbol that produces the stub
  error. This symbol will usually (always?) come from the classpath
  entries and therefore we don't have its position (that's why we keep
  track of `symbolOnCompletion` as well). This is the one that we have to
  explicitly use in the stub error message, the culprit so to speak.

  Aside from these two changes, this commit modifies the existing tests
  that are affected by the change in the error message, which is more
  precise now, and adds new tests for stub errors that happen in complex
  inner cases and in return type of `MethodType`.

* Check that order of initialization is correct

  With the changes introduced previously to keep track of position of
  symbols coming from source files, we may ask ourselves: is this going to
  work always? What happens if two symbols the initialization of two
  symbols is intermingled and the stub error message gets the wrong
  position?

  This commit adds a test case and modifications to the test
  infrastructure to double check empirically that this does not happen.
  Usually, this interaction in symbol initialization won't happen because
  the `UnPickler` will lazily load all the buckets necessary for a symbol
  to be truly initialized, with the pertinent addresses from which this
  information has to be deserialized. This ensures that this operation is
  atomic and no other symbol initialization can happen in the meantime.

  Even though the previous paragraph is the feeling I got from reading the
  sources, this commit creates a test to double-check it. My attempt to be
  better safe than sorry.

* Improve contents of the stub error message

  This commit modifies the format of the previous stub error message by
  being more precise in its formulation. It follows the structured format:

  ```
  s"""|Symbol '${name.nameKind} ${owner.fullName}.$name' is missing from the classpath.
      |This symbol is required by '${lazyCompletingSymbol.kindString} ${lazyCompletingSymbol.fullName}'.
  ```

  This format has the advantage that is more readable and explicit on
  what's happening. First, we report what is missing. Then, why it was
  required. Hopefully, people working on direct dependencies will find the
  new message friendlier.

Having a good test suite to check the previously added code is
important. This commit checks that stub errors happen in presence of
well-known and widely used Scala features. These include:

* Higher kinded types.
* Type definitions.
* Inheritance and subclasses.
* Typeclasses and implicits.

- This is the commit message #4:

Use `lastTreeToTyper` to get better positions

The previous strategy to get the last user-defined position for knowing
what was the root cause (the trigger) of stub errors relied on
instrumenting `def info`.

This instrumentation, while easy to implement, is inefficient since we
register the positions for symbols that are already completed.

However, we cannot do it only for uncompleted symbols (!hasCompleteInfo)
because the positions won't be correct anymore -- definitions using stub
symbols (val b = new B) are for the compiler completed, but their use
throws stub errors. This means that if we initialize symbols between a
definition and its use, we'll use their positions instead of the
position of `b`.

To work around this we use `lastTreeToTyper`. We assume that stub errors
will be thrown by Typer at soonest.

The benefit of this approach is better error messages. The positions
used in them are now as concrete as possible since they point to the
exact tree that **uses** a symbol, instead of the one that **defines**
it. Have a look at `StubErrorComplexInnerClass` for an example.

This commit removes the previous infrastructure and replaces it by the
new one. It also removes the fields positions from the subclasses of
`StubSymbol`s.

- This is the commit message #5:

Keep track of completing symbols

Make sure that cycles don't happen by keeping track of all the
symbols that are being completed by `completeInternal`. Stub errors only
need the last completing symbols, but the whole stack of symbols may
be useful to reporting other error like cyclic initialization issues.

I've added this per Jason's suggestion. I've implemented with a list
because `remove` in an array buffer is linear. Array was not an option
because I would need to resize it myself. I think that even though list
is not as efficient memory-wise, it probably doesn't matter since the
stack will usually be small.

- This is the commit message #6:

Remove `isPackage` from `newStubSymbol`

Remove `isPackage` since in 2.12.x its value is not used.
adriaanm pushed a commit that referenced this pull request Jan 8, 2019
# This is the 1st commit message:

Optimize BitSet#min and max for case of Ordering.Int

# This is the commit message #2:

Fix buggy bitset min and max implementations
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants