Skip to content

New ci #18

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 15 commits into from
Closed

New ci #18

wants to merge 15 commits into from

Conversation

adriaanm
Copy link
Owner

No description provided.

adriaanm and others added 13 commits January 4, 2015 13:16
The enclosed test case stopped working in 2.11.5 on the back of
scala#4040.

The key change was that we ran all post-typer info transformers
on each run of the compiler, rather than trying to reuse the results
of the previous run.

In that patch, I noticed one place [1] in specialization that
aggressively entered specialized members into the owning scope,
rather than relying on `transformInfo` to place the new members
in the scope of the newly created element of the info history.
I made that change after noticing that this code could actually
mutated scopes of specializaed types at the parser phase, which
led to fairly obscure failures.

This bug is another one of these obscure failures, and has the
same root cause. We effectively "double specialiaze" Function0,
which trips an assertion when `method apply$mcI$sp` is found
twice in a scope.

I have found another spot that was directly manipulating the scope,
and removed the offending code.

[1] scala#4040 (comment)
SI-9089 Another REPL/FSC + specialization bug fix
Each ClassBType is identified by its internalName, the fully qualified
JVM class name. Before this change, the name was stored in the `chrs`
array of the compiler name table (hash consed), with the idea to avoid
materializing the string.

However, we materialize the string anyway, because each ClassBType is
stored in the classBTypeFromInternalNameMap, indexed by the string.
If string equality turns out to be too slow we can use interning.

For the inliner, we read classes from bytecode and create ClassBTypes
for them. The names of these classes would not yet exist in the name
table, so the backend would need to be able to create new names. Using
Strings removes this dependency.
There's already the map classBTypeFromInternalNameMap in BTypes which
stores all ClassBTypes.
Introduces methods for textifying classes, methods, InsnLists and
individual AbstractInsnNodes.
This infrastructure is required for the inliner: when inlining code
from a classfile, the corresponding ClassBType is needed for various
things (eg access checks, InnerClass attribute).

The test creates two ClassBTypes for the same class: once using the
(unpickled) Symbol, once using the parsed ASM ClassNode, and verifies
that the two are the same.

There's a cleanup to the InnerClass attribute:

    object T { class Member; def foo = { class Local } }
    class T

For Java compatibility the InnerClass entry for Member says the class
is nested in T (not in the module class T$). We now make sure to add
that entry only to T, not to T$ (unless Member is actually referenced
in the classfile T$, in that case it will be added, as required).
  - Rename CodeRepository to ByteCodeRepository
  - Scaladoc on OptimizerReporting
  - Scaladoc on ByteCodeRepository
Construct ClassBTypes from parsed classfiles
SI-9087 Fix min/max of reversed Double/Float orderings
@adriaanm
Copy link
Owner Author

PLS SYNCH

@adriaanm adriaanm closed this Jan 21, 2015
cunei pushed a commit to cunei/scala that referenced this pull request May 19, 2015
In Scala 2.8.2, an optimization was added to create a static
cache for Symbol literals (ie, the results of `Symbol.apply("foo"))`.
This saves the map lookup on the second pass through code.

This actually was broken somewhere during the Scala 2.10 series,
after the addition of an overloaded `apply` method to `Symbol`.

The cache synthesis code was made aware of the overload and brought
back to working condition recently, in scala#3149.

However, this has uncovered a latent bug when the Symbol literals are
defined with traits.

One of the enclosed tests failed with:

	  jvm > t8933b-run.log
	java.lang.IllegalAccessError: tried to access field MotherClass.symbol$1 from class MixinWithSymbol$class
	        at MixinWithSymbol$class.symbolFromTrait(A.scala:3)
	        at MotherClass.symbolFromTrait(Test.scala:1)

This commit simply disables the optimization if we are in a trait.
Alternative fixes might be: a) make the static Symbol cache field
public / b) "mixin" the static symbol cache. Neither of these
seem worth the effort and risk for an already fairly situational
optimization.

Here's how the optimization looks in a class:

	% cat sandbox/test.scala; qscalac sandbox/test.scala && echo ":javap C" | qscala;
	class C {
	  'a; 'b
	}
	Welcome to Scala version 2.11.5-20141106-145558-aa558dce6d (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_20).
	Type in expressions to have them evaluated.
	Type :help for more information.

	scala> :javap C
	  Size 722 bytes
	  MD5 checksum 6bb00189166917254e8d40499ee7c887
	  Compiled from "test.scala"
	public class C

	{
	  public static {};
	    descriptor: ()V
	    flags: ACC_PUBLIC, ACC_STATIC
	    Code:
	      stack=2, locals=0, args_size=0
	         0: getstatic     adriaanm#16                 // Field scala/Symbol$.MODULE$:Lscala/Symbol$;
	         3: ldc           adriaanm#18                 // String a
	         5: invokevirtual adriaanm#22                 // Method scala/Symbol$.apply:(Ljava/lang/String;)Lscala/Symbol;
	         8: putstatic     adriaanm#26                 // Field symbol$1:Lscala/Symbol;
	        11: getstatic     adriaanm#16                 // Field scala/Symbol$.MODULE$:Lscala/Symbol$;
	        14: ldc           scala#28                 // String b
	        16: invokevirtual adriaanm#22                 // Method scala/Symbol$.apply:(Ljava/lang/String;)Lscala/Symbol;
	        19: putstatic     scala#31                 // Field symbol$2:Lscala/Symbol;
	        22: return

	  public C();
	    descriptor: ()V
	    flags: ACC_PUBLIC
	    Code:
	      stack=1, locals=1, args_size=1
	         0: aload_0
	         1: invokespecial scala#34                 // Method java/lang/Object."<init>":()V
	         4: getstatic     adriaanm#26                 // Field symbol$1:Lscala/Symbol;
	         7: pop
	         8: getstatic     scala#31                 // Field symbol$2:Lscala/Symbol;
	        11: pop
	        12: return
	}

fixup
cunei pushed a commit to cunei/scala that referenced this pull request May 19, 2015
These methods are "signature polymorphic", which means that compiler
should not:
  1. adapt the arguments to `Object`
  2. wrap the repeated parameters in an array
  3. adapt the result type to `Object`, but instead treat it as it
     it already conforms to the expected type.

Dispiritingly, my initial attempt to implement this touched the type
checker, uncurry, erasure, and the backend.

However, I realized we could centralize handling of this in the typer
if at each application we substituted the signature polymorphic
symbol with a clone that carried its implied signature, which is
derived from the types of the arguments (typechecked without an
expected type) and position within and enclosing cast or block.

The test case requires Java 7+ to compile so is currently embedded
in a conditionally compiled block of code in a run test.

We ought to create a partest category for modern JVMs so we can
write such tests in a more natural style.

Here's how this looks in bytecode. Note the `bipush` / `istore`
before/after the invocation of `invokeExact`, and the descriptor
`(LO$;I)I`.

```
% cat sandbox/poly-sig.scala && qscala Test && echo ':javap Test$#main' | qscala
import java.lang.invoke._

object O {
  def bar(x: Int): Int = -x
}

object Test {
  def main(args: Array[String]): Unit = {
    def lookup(name: String, params: Array[Class[_]], ret: Class[_]) = {
      val lookup = java.lang.invoke.MethodHandles.lookup
      val mt = MethodType.methodType(ret, params)
      lookup.findVirtual(O.getClass, name, mt)
    }
    def lookupBar = lookup("bar", Array(classOf[Int]), classOf[Int])

    val barResult: Int = lookupBar.invokeExact(O, 42)
    ()
  }
}

scala> :javap Test$#main
  public void main(java.lang.String[]);
    descriptor: ([Ljava/lang/String;)V
    flags: ACC_PUBLIC
    Code:
      stack=3, locals=3, args_size=2
         0: aload_0
         1: invokespecial adriaanm#18                 // Method lookupBar$1:()Ljava/lang/invoke/MethodHandle;
         4: getstatic     adriaanm#23                 // Field O$.MODULE$:LO$;
         7: bipush        42
         9: invokevirtual scala#29                 // Method java/lang/invoke/MethodHandle.invokeExact:(LO$;I)I
        12: istore_2
        13: return
      LocalVariableTable:
        Start  Length  Slot  Name   Signature
            0      14     0  this   LTest$;
            0      14     1  args   [Ljava/lang/String;
           13       0     2 barResult   I
      LineNumberTable:
        line 16: 0
}
```

I've run this test across our active JVMs:

```
% for v in 1.6 1.7 1.8; do java_use $v; pt --terse test/files/run/t7965.scala || break; done
java version "1.6.0_65"
Java(TM) SE Runtime Environment (build 1.6.0_65-b14-466.1-11M4716)
Java HotSpot(TM) 64-Bit Server VM (build 20.65-b04-466.1, mixed mode)
Selected 1 tests drawn from specified tests

.

1/1 passed (elapsed time: 00:00:02)
Test Run PASSED
java version "1.7.0_71"
Java(TM) SE Runtime Environment (build 1.7.0_71-b14)
Java HotSpot(TM) 64-Bit Server VM (build 24.71-b01, mixed mode)
Selected 1 tests drawn from specified tests

.

1/1 passed (elapsed time: 00:00:07)
Test Run PASSED
java version "1.8.0_25"
Java(TM) SE Runtime Environment (build 1.8.0_25-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed mode)
Selected 1 tests drawn from specified tests

.

1/1 passed (elapsed time: 00:00:05)
Test Run PASSED
```
adriaanm pushed a commit that referenced this pull request Aug 3, 2015
And do the same for the specialized variants.

Tested by a Java source file that uses lambda syntax to create
instances of generic and specialized `Function{0,1}`.

Here's how the interfaces look now:

```
% javap -c -classpath /tmp/function 'scala.Function1'
Compiled from "Function1.scala"
public interface scala.Function1<T1, R> {
  public abstract R apply(T1);

  public <A> scala.Function1<A, R> compose(scala.Function1<A, T1>);
    Code:
       0: aload_0
       1: aload_1
       2: invokestatic  #18                 // Method scala/Function1$class.compose:(Lscala/Function1;Lscala/Function1;)Lscala/Function1;
       5: areturn

  public <A> scala.Function1<T1, A> andThen(scala.Function1<R, A>);
    Code:
       0: aload_0
       1: aload_1
       2: invokestatic  #24                 // Method scala/Function1$class.andThen:(Lscala/Function1;Lscala/Function1;)Lscala/Function1;
       5: areturn

  public abstract java.lang.String toString();

  public int apply$mcII$sp(int);
    Code:
       0: aload_0
       1: iload_1
       2: invokestatic  scala#110                // Method scala/Function1$class.apply$mcII$sp:(Lscala/Function1;I)I
       5: ireturn

  public long apply$mcJI$sp(int);
    Code:
       0: aload_0
       1: iload_1
       2: invokestatic  scala#115                // Method scala/Function1$class.apply$mcJI$sp:(Lscala/Function1;I)J
       5: lreturn
    ...
}

% javap -c -classpath /tmp/function 'scala.Function1$mcII$sp'
Compiled from "Function1.scala"
public interface scala.Function1$mcII$sp extends scala.Function1<java.lang.Object, java.lang.Object> {
  public java.lang.Object apply(java.lang.Object);
    Code:
       0: aload_0
       1: aload_1
       2: invokestatic  #16                 // Method scala/runtime/BoxesRunTime.unboxToInt:(Ljava/lang/Object;)I
       5: invokeinterface #19,  2           // InterfaceMethod apply:(I)I
      10: invokestatic  #23                 // Method scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
      13: areturn

  public abstract int apply$mcII$sp(int);

  public int apply(int);
    Code:
       0: aload_0
       1: iload_1
       2: invokeinterface scala#30,  2           // InterfaceMethod apply$mcII$sp:(I)I
       7: ireturn
}
```
adriaanm pushed a commit that referenced this pull request Aug 8, 2015
And do the same for the specialized variants.

Tested by a Java source file that uses lambda syntax to create
instances of generic and specialized `Function{0,1}`.

Here's how the interfaces look now:

```
% javap -c -classpath /tmp/function 'scala.Function1'
Compiled from "Function1.scala"
public interface scala.Function1<T1, R> {
  public abstract R apply(T1);

  public <A> scala.Function1<A, R> compose(scala.Function1<A, T1>);
    Code:
       0: aload_0
       1: aload_1
       2: invokestatic  #18                 // Method scala/Function1$class.compose:(Lscala/Function1;Lscala/Function1;)Lscala/Function1;
       5: areturn

  public <A> scala.Function1<T1, A> andThen(scala.Function1<R, A>);
    Code:
       0: aload_0
       1: aload_1
       2: invokestatic  #24                 // Method scala/Function1$class.andThen:(Lscala/Function1;Lscala/Function1;)Lscala/Function1;
       5: areturn

  public abstract java.lang.String toString();

  public int apply$mcII$sp(int);
    Code:
       0: aload_0
       1: iload_1
       2: invokestatic  scala#110                // Method scala/Function1$class.apply$mcII$sp:(Lscala/Function1;I)I
       5: ireturn

  public long apply$mcJI$sp(int);
    Code:
       0: aload_0
       1: iload_1
       2: invokestatic  scala#115                // Method scala/Function1$class.apply$mcJI$sp:(Lscala/Function1;I)J
       5: lreturn
    ...
}

% javap -c -classpath /tmp/function 'scala.Function1$mcII$sp'
Compiled from "Function1.scala"
public interface scala.Function1$mcII$sp extends scala.Function1<java.lang.Object, java.lang.Object> {
  public java.lang.Object apply(java.lang.Object);
    Code:
       0: aload_0
       1: aload_1
       2: invokestatic  #16                 // Method scala/runtime/BoxesRunTime.unboxToInt:(Ljava/lang/Object;)I
       5: invokeinterface #19,  2           // InterfaceMethod apply:(I)I
      10: invokestatic  #23                 // Method scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
      13: areturn

  public abstract int apply$mcII$sp(int);

  public int apply(int);
    Code:
       0: aload_0
       1: iload_1
       2: invokeinterface scala#30,  2           // InterfaceMethod apply$mcII$sp:(I)I
       7: ireturn
}
```
adriaanm pushed a commit that referenced this pull request Sep 2, 2015
And do the same for the specialized variants.

Tested by a Java source file that uses lambda syntax to create
instances of generic and specialized `Function{0,1}`.

Here's how the interfaces look now:

```
% javap -c -classpath /tmp/function 'scala.Function1'
Compiled from "Function1.scala"
public interface scala.Function1<T1, R> {
  public abstract R apply(T1);

  public <A> scala.Function1<A, R> compose(scala.Function1<A, T1>);
    Code:
       0: aload_0
       1: aload_1
       2: invokestatic  #18                 // Method scala/Function1$class.compose:(Lscala/Function1;Lscala/Function1;)Lscala/Function1;
       5: areturn

  public <A> scala.Function1<T1, A> andThen(scala.Function1<R, A>);
    Code:
       0: aload_0
       1: aload_1
       2: invokestatic  #24                 // Method scala/Function1$class.andThen:(Lscala/Function1;Lscala/Function1;)Lscala/Function1;
       5: areturn

  public abstract java.lang.String toString();

  public int apply$mcII$sp(int);
    Code:
       0: aload_0
       1: iload_1
       2: invokestatic  scala#110                // Method scala/Function1$class.apply$mcII$sp:(Lscala/Function1;I)I
       5: ireturn

  public long apply$mcJI$sp(int);
    Code:
       0: aload_0
       1: iload_1
       2: invokestatic  scala#115                // Method scala/Function1$class.apply$mcJI$sp:(Lscala/Function1;I)J
       5: lreturn
    ...
}

% javap -c -classpath /tmp/function 'scala.Function1$mcII$sp'
Compiled from "Function1.scala"
public interface scala.Function1$mcII$sp extends scala.Function1<java.lang.Object, java.lang.Object> {
  public java.lang.Object apply(java.lang.Object);
    Code:
       0: aload_0
       1: aload_1
       2: invokestatic  #16                 // Method scala/runtime/BoxesRunTime.unboxToInt:(Ljava/lang/Object;)I
       5: invokeinterface #19,  2           // InterfaceMethod apply:(I)I
      10: invokestatic  #23                 // Method scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
      13: areturn

  public abstract int apply$mcII$sp(int);

  public int apply(int);
    Code:
       0: aload_0
       1: iload_1
       2: invokeinterface scala#30,  2           // InterfaceMethod apply$mcII$sp:(I)I
       7: ireturn
}
```
SethTisue pushed a commit that referenced this pull request Apr 25, 2018
Add base traits of collection hierarchy
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants