Skip to content
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ def rgb2gray(rgb: np.array) -> np.array:
def gray2binary(gray: np.array) -> np.array:
"""
Return binary image from gray image

>>> gray2binary(np.array([[127, 255, 0]]))
array([[False, True, False]])
>>> gray2binary(np.array([[0]]))
Expand Down
4 changes: 2 additions & 2 deletions digital_image_processing/rotation/rotation.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,12 +10,12 @@ def get_rotation(
) -> np.ndarray:
"""
Get image rotation
:param img: np.array
:param img: np.ndarray
:param pt1: 3x2 list
:param pt2: 3x2 list
:param rows: columns image shape
:param cols: rows image shape
:return: np.array
:return: np.ndarray
"""
matrix = cv2.getAffineTransform(pt1, pt2)
return cv2.warpAffine(img, matrix, (rows, cols))
Expand Down
4 changes: 3 additions & 1 deletion maths/average_median.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,9 @@ def median(nums: list) -> int | float:
Returns:
Median.
"""
sorted_list = sorted(nums)
# The sorted function returns list[SupportsRichComparisonT@sorted]
# which does not support `+`
sorted_list: list[int] = sorted(nums)
length = len(sorted_list)
mid_index = length >> 1
return (
Expand Down
2 changes: 1 addition & 1 deletion maths/euler_modified.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

def euler_modified(
ode_func: Callable, y0: float, x0: float, step_size: float, x_end: float
) -> np.array:
) -> np.ndarray:
"""
Calculate solution at each step to an ODE using Euler's Modified Method
The Euler Method is straightforward to implement, but can't give accurate solutions.
Expand Down
4 changes: 2 additions & 2 deletions maths/gaussian_error_linear_unit.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
import numpy as np


def sigmoid(vector: np.array) -> np.array:
def sigmoid(vector: np.ndarray) -> np.ndarray:
"""
Mathematical function sigmoid takes a vector x of K real numbers as input and
returns 1/ (1 + e^-x).
Expand All @@ -25,7 +25,7 @@ def sigmoid(vector: np.array) -> np.array:
return 1 / (1 + np.exp(-vector))


def gaussian_error_linear_unit(vector: np.array) -> np.array:
def gaussian_error_linear_unit(vector: np.ndarray) -> np.ndarray:
"""
Implements the Gaussian Error Linear Unit (GELU) function

Expand Down
45 changes: 30 additions & 15 deletions maths/jaccard_similarity.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,11 @@
"""


def jaccard_similarity(set_a, set_b, alternative_union=False):
def jaccard_similarity(
set_a: set[str] | list[str] | tuple[str],
set_b: set[str] | list[str] | tuple[str],
alternative_union=False,
):
"""
Finds the jaccard similarity between two sets.
Essentially, its intersection over union.
Expand All @@ -37,41 +41,52 @@ def jaccard_similarity(set_a, set_b, alternative_union=False):
>>> set_b = {'c', 'd', 'e', 'f', 'h', 'i'}
>>> jaccard_similarity(set_a, set_b)
0.375

>>> jaccard_similarity(set_a, set_a)
1.0

>>> jaccard_similarity(set_a, set_a, True)
0.5

>>> set_a = ['a', 'b', 'c', 'd', 'e']
>>> set_b = ('c', 'd', 'e', 'f', 'h', 'i')
>>> jaccard_similarity(set_a, set_b)
0.375
>>> set_a = ('c', 'd', 'e', 'f', 'h', 'i')
>>> set_b = ['a', 'b', 'c', 'd', 'e']
>>> jaccard_similarity(set_a, set_b)
0.375
>>> set_a = ('c', 'd', 'e', 'f', 'h', 'i')
>>> set_b = ['a', 'b', 'c', 'd']
>>> jaccard_similarity(set_a, set_b, True)
0.2
>>> set_a = {'a', 'b'}
>>> set_b = ['c', 'd']
>>> jaccard_similarity(set_a, set_b)
Traceback (most recent call last):
...
ValueError: Set a and b must either both be sets or be either a list or a tuple.
"""

if isinstance(set_a, set) and isinstance(set_b, set):
intersection = len(set_a.intersection(set_b))
intersection_length = len(set_a.intersection(set_b))

if alternative_union:
union = len(set_a) + len(set_b)
union_length = len(set_a) + len(set_b)
else:
union = len(set_a.union(set_b))
union_length = len(set_a.union(set_b))

return intersection / union
return intersection_length / union_length

if isinstance(set_a, (list, tuple)) and isinstance(set_b, (list, tuple)):
elif isinstance(set_a, (list, tuple)) and isinstance(set_b, (list, tuple)):
intersection = [element for element in set_a if element in set_b]

if alternative_union:
union = len(set_a) + len(set_b)
return len(intersection) / union
return len(intersection) / (len(set_a) + len(set_b))
else:
union = set_a + [element for element in set_b if element not in set_a]
# Cast set_a to list because tuples cannot be mutated
union = list(set_a) + [element for element in set_b if element not in set_a]
return len(intersection) / len(union)

return len(intersection) / len(union)
return None
raise ValueError(
"Set a and b must either both be sets or be either a list or a tuple."
)


if __name__ == "__main__":
Expand Down
33 changes: 22 additions & 11 deletions maths/newton_raphson.py
Original file line number Diff line number Diff line change
@@ -1,24 +1,35 @@
"""
Author: P Shreyas Shetty
Implementation of Newton-Raphson method for solving equations of kind
f(x) = 0. It is an iterative method where solution is found by the expression
x[n+1] = x[n] + f(x[n])/f'(x[n])
If no solution exists, then either the solution will not be found when iteration
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
is raised. If iteration limit is reached, try increasing maxiter.
"""
Author: P Shreyas Shetty
Implementation of Newton-Raphson method for solving equations of kind
f(x) = 0. It is an iterative method where solution is found by the expression
x[n+1] = x[n] + f(x[n])/f'(x[n])
If no solution exists, then either the solution will not be found when iteration
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
is raised. If iteration limit is reached, try increasing maxiter.
"""

import math as m
from collections.abc import Callable

DerivativeFunc = Callable[[float], float]


def calc_derivative(f, a, h=0.001):
def calc_derivative(f: DerivativeFunc, a: float, h: float = 0.001) -> float:
"""
Calculates derivative at point a for function f using finite difference
method
"""
return (f(a + h) - f(a - h)) / (2 * h)


def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=False):
def newton_raphson(
f: DerivativeFunc,
x0: float = 0,
maxiter: int = 100,
step: float = 0.0001,
maxerror: float = 1e-6,
logsteps: bool = False,
) -> tuple[float, float, list[float]]:
a = x0 # set the initial guess
steps = [a]
error = abs(f(a))
Expand All @@ -36,7 +47,7 @@ def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=Fa
if logsteps:
# If logstep is true, then log intermediate steps
return a, error, steps
return a, error
return a, error, []


if __name__ == "__main__":
Expand Down
2 changes: 1 addition & 1 deletion maths/qr_decomposition.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import numpy as np


def qr_householder(a):
def qr_householder(a: np.ndarray):
"""Return a QR-decomposition of the matrix A using Householder reflection.

The QR-decomposition decomposes the matrix A of shape (m, n) into an
Expand Down
2 changes: 1 addition & 1 deletion maths/sigmoid.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
import numpy as np


def sigmoid(vector: np.array) -> np.array:
def sigmoid(vector: np.ndarray) -> np.ndarray:
"""
Implements the sigmoid function

Expand Down
4 changes: 2 additions & 2 deletions maths/tanh.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,12 @@
import numpy as np


def tangent_hyperbolic(vector: np.array) -> np.array:
def tangent_hyperbolic(vector: np.ndarray) -> np.ndarray:
"""
Implements the tanh function

Parameters:
vector: np.array
vector: np.ndarray

Returns:
tanh (np.array): The input numpy array after applying tanh.
Expand Down