Skip to content
This repository was archived by the owner on Nov 27, 2024. It is now read-only.

Support LCM_LoRA models #101

Merged
merged 1 commit into from
Jan 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions OnnxStack.Core/Model/OnnxInferenceParameters.cs
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,18 @@ public void AddOutputBuffer()
public IReadOnlyDictionary<string, OrtValue> OutputNameValues => _outputs.NameValues;


/// <summary>
/// Gets the expected input parameter count.
/// </summary>
public int InputCount => _metadata.Inputs.Count;


/// <summary>
/// Gets the expected output parameter count.
/// </summary>
public int OutputCount => _metadata.Outputs.Count;


/// <summary>
/// Performs application-defined tasks associated with freeing, releasing, or resetting unmanaged resources.
/// </summary>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,8 @@ protected override async Task<DenseTensor<float>> SchedulerStepAsync(ModelOption
inferenceParameters.AddInputTensor(inputTensor);
inferenceParameters.AddInputTensor(timestepTensor);
inferenceParameters.AddInputTensor(promptEmbeddings.PromptEmbeds);
inferenceParameters.AddInputTensor(guidanceEmbeddings);
if (inferenceParameters.InputCount == 4)
inferenceParameters.AddInputTensor(guidanceEmbeddings);
inferenceParameters.AddOutputBuffer(outputDimension);

var results = await _onnxModelService.RunInferenceAsync(modelOptions.BaseModel, OnnxModelType.Unet, inferenceParameters);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,8 @@ protected override async Task<DenseTensor<float>> SchedulerStepAsync(ModelOption
inferenceParameters.AddInputTensor(inputTensor);
inferenceParameters.AddInputTensor(timestepTensor);
inferenceParameters.AddInputTensor(promptEmbeddings.PromptEmbeds);
inferenceParameters.AddInputTensor(guidanceEmbeddings);
if (inferenceParameters.InputCount == 4)
inferenceParameters.AddInputTensor(guidanceEmbeddings);
inferenceParameters.AddOutputBuffer(outputDimension);

var results = await _onnxModelService.RunInferenceAsync(modelOptions.BaseModel, OnnxModelType.Unet, inferenceParameters);
Expand Down