Skip to content

Fix model.evaluate don't have output #1004

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Mar 10, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions src/TensorFlowNET.Core/Keras/Engine/ICallback.cs
Original file line number Diff line number Diff line change
Expand Up @@ -12,4 +12,7 @@ public interface ICallback
void on_predict_batch_begin(long step);
void on_predict_batch_end(long end_step, Dictionary<string, Tensors> logs);
void on_predict_end();
void on_test_begin();
void on_test_batch_begin(long step);
void on_test_batch_end(long end_step, IEnumerable<(string, Tensor)> logs);
}
14 changes: 13 additions & 1 deletion src/TensorFlowNET.Keras/Callbacks/CallbackList.cs
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,10 @@ public void on_train_begin()
{
callbacks.ForEach(x => x.on_train_begin());
}

public void on_test_begin()
{
callbacks.ForEach(x => x.on_test_begin());
}
public void on_epoch_begin(int epoch)
{
callbacks.ForEach(x => x.on_epoch_begin(epoch));
Expand Down Expand Up @@ -60,4 +63,13 @@ public void on_predict_end()
{
callbacks.ForEach(x => x.on_predict_end());
}

public void on_test_batch_begin(long step)
{
callbacks.ForEach(x => x.on_train_batch_begin(step));
}
public void on_test_batch_end(long end_step, IEnumerable<(string, Tensor)> logs)
{
callbacks.ForEach(x => x.on_test_batch_end(end_step, logs));
}
}
23 changes: 18 additions & 5 deletions src/TensorFlowNET.Keras/Callbacks/History.cs
Original file line number Diff line number Diff line change
Expand Up @@ -18,15 +18,19 @@ public void on_train_begin()
epochs = new List<int>();
history = new Dictionary<string, List<float>>();
}

public void on_test_begin()
{
epochs = new List<int>();
history = new Dictionary<string, List<float>>();
}
public void on_epoch_begin(int epoch)
{

}

public void on_train_batch_begin(long step)
{

}

public void on_train_batch_end(long end_step, Dictionary<string, float> logs)
Expand Down Expand Up @@ -55,16 +59,25 @@ public void on_predict_begin()

public void on_predict_batch_begin(long step)
{

}

public void on_predict_batch_end(long end_step, Dictionary<string, Tensors> logs)
{

}

public void on_predict_end()
{


}

public void on_test_batch_begin(long step)
{

}

public void on_test_batch_end(long end_step, IEnumerable<(string, Tensor)> logs)
{
}
}
31 changes: 26 additions & 5 deletions src/TensorFlowNET.Keras/Callbacks/ProgbarLogger.cs
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,10 @@ public void on_train_begin()
_called_in_fit = true;
_sw = new Stopwatch();
}

public void on_test_begin()
{
_sw = new Stopwatch();
}
public void on_epoch_begin(int epoch)
{
_reset_progbar();
Expand All @@ -44,7 +47,7 @@ public void on_train_batch_end(long end_step, Dictionary<string, float> logs)
var progress = "";
var length = 30.0 / _parameters.Steps;
for (int i = 0; i < Math.Floor(end_step * length - 1); i++)
progress += "=";
progress += "=";
if (progress.Length < 28)
progress += ">";
else
Expand Down Expand Up @@ -84,17 +87,35 @@ public void on_predict_begin()

public void on_predict_batch_begin(long step)
{

}

public void on_predict_batch_end(long end_step, Dictionary<string, Tensors> logs)
{

}

public void on_predict_end()
{


}

public void on_test_batch_begin(long step)
{
_sw.Restart();
}
public void on_test_batch_end(long end_step, IEnumerable<(string, Tensor)> logs)
{
_sw.Stop();
var elapse = _sw.ElapsedMilliseconds;
var results = string.Join(" - ", logs.Select(x => $"{x.Item1}: {(float)x.Item2.numpy():F6}"));

Binding.tf_output_redirect.Write($"{end_step + 1:D4}/{_parameters.Steps:D4} - {elapse}ms/step - {results}");
if (!Console.IsOutputRedirected)
{
Console.CursorLeft = 0;
}
}

}
}
34 changes: 29 additions & 5 deletions src/TensorFlowNET.Keras/Engine/Model.Evaluate.cs
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,10 @@
using Tensorflow.Keras.ArgsDefinition;
using Tensorflow.Keras.Engine.DataAdapters;
using static Tensorflow.Binding;
using Tensorflow.Keras.Layers;
using Tensorflow.Keras.Utils;
using Tensorflow;
using Tensorflow.Keras.Callbacks;

namespace Tensorflow.Keras.Engine
{
Expand All @@ -31,6 +35,11 @@ public void evaluate(NDArray x, NDArray y,
bool use_multiprocessing = false,
bool return_dict = false)
{
if (x.dims[0] != y.dims[0])
{
throw new InvalidArgumentError(
$"The array x and y should have same value at dim 0, but got {x.dims[0]} and {y.dims[0]}");
}
var data_handler = new DataHandler(new DataHandlerArgs
{
X = x,
Expand All @@ -46,18 +55,32 @@ public void evaluate(NDArray x, NDArray y,
StepsPerExecution = _steps_per_execution
});

var callbacks = new CallbackList(new CallbackParams
{
Model = this,
Verbose = verbose,
Steps = data_handler.Inferredsteps
});
callbacks.on_test_begin();

foreach (var (epoch, iterator) in data_handler.enumerate_epochs())
{
reset_metrics();
// callbacks.on_epoch_begin(epoch)
//callbacks.on_epoch_begin(epoch);
// data_handler.catch_stop_iteration();
IEnumerable<(string, Tensor)> results = null;
IEnumerable<(string, Tensor)> logs = null;

foreach (var step in data_handler.steps())
{
// callbacks.on_train_batch_begin(step)
results = test_function(data_handler, iterator);
callbacks.on_test_batch_begin(step);
logs = test_function(data_handler, iterator);
var end_step = step + data_handler.StepIncrement;
callbacks.on_test_batch_end(end_step, logs);
}
}
Console.WriteLine();
GC.Collect();
GC.WaitForPendingFinalizers();
}

public KeyValuePair<string, float>[] evaluate(IDatasetV2 x)
Expand All @@ -75,7 +98,8 @@ public KeyValuePair<string, float>[] evaluate(IDatasetV2 x)
reset_metrics();
// callbacks.on_epoch_begin(epoch)
// data_handler.catch_stop_iteration();



foreach (var step in data_handler.steps())
{
// callbacks.on_train_batch_begin(step)
Expand Down