SRI Yices 2 is a solver for Satisfiability Modulo Theories (SMT) problems. Yices 2 can process input written in the SMT-LIB language, or in Yices' own specification language. We also provide a C API and bindings for Java, Python, Go, and OCaml.
This repository includes the source of Yices 2, documentation, tests, and examples.
Yices 2 is developed by Bruno Dutertre, Dejan Jovanovic, Stéphane Graham-Lengrand, and Ian A. Mason at the Computer Science Laboratory, SRI International. To contact us, or to get more information about Yices, please visit our website.
Here are a few typical small examples that illustrate the use of Yices using the SMT2 language.
;; QF_LRA = Quantifier-Free Linear Real Arithmetic
(set-logic QF_LRA)
;; Declare variables x, y
(declare-fun x () Real)
(declare-fun y () Real)
;; Find solution to (x + y > 0), ((x < 0) || (y < 0))
(assert (> (+ x y) 0))
(assert (or (< x 0) (< y 0)))
;; Run a satisfiability check
(check-sat)
;; Print the model
(get-model)Running Yices on the above problem gives a solution
> yices-smt2 lra.smt2
sat
((define-fun x () Real 2.0)
(define-fun y () Real (- 1.0)))
;; QF_BV = Quantifier-Free Bit-Vectors
(set-logic QF_BV)
;; Declare variables
(declare-fun x () (_ BitVec 32))
(declare-fun y () (_ BitVec 32))
;; Find solution to (signed) x > 0, y > 0, x + y < x
(assert (bvsgt x #x00000000))
(assert (bvsgt y #x00000000))
(assert (bvslt (bvadd x y) x))
;; Check
(check-sat)
;; Get the model
(get-model)Running Yices on the above problem gives
> yices-smt2 bv.smt2
sat
((define-fun x () (_ BitVec 32) #b01000000000000000000000000000000)
(define-fun y () (_ BitVec 32) #b01000000000000000000000000000000))
;; QF_NRA = Quantifier-Free Nonlinear Real Arithmetic
(set-logic QF_NRA)
;; Declare variables
(declare-fun x () Real)
(declare-fun y () Real)
;; Find solution to x^2 + y^2 = 1, x = 2*y, x > 0
(assert (= (+ (* x x) (* y y)) 1))
(assert (= x (* 2 y)))
(assert (> x 0))
;; Check
(check-sat)
;; Get the model
(get-model)Running Yices on the above problem gives
sat
((define-fun x () Real 0.894427)
(define-fun y () Real 0.447214))
Yices can be run in parallel using a portfolio approach, which launches several instances of yices_smt2 with different configurations and returns as soon as one instance finds a solution. This is useful for hard SMT problems where different configurations may solve the problem faster.
A Python script is provided in utils/yices2_parallel.py for this purpose. Example usage:
python3 utils/yices2_parallel.py --yices /path/to/yices_smt2 -n 4 --verbose path/to/problem.smt2--yicesspecifies the path to theyices_smt2executable (default:yices_smt2in the script directory)-nsets the number of parallel threads/configurations (default: 4)--verboseenables detailed output- The last argument is the path to your SMT2 file
The script will run several Yices instances in parallel and print the result (sat, unsat, or unknown) as soon as one instance finishes.
For more options, run:
python3 utils/yices2_parallel.py --helpCurrently you can install Yices either using Homebrew or Apt.
Installing on Darwin using homebrew can be achieved via:
brew install SRI-CSL/sri-csl/yices2
This will install the full mcsat-enabled version of Yices, including dynamic library and header files.
To install Yices on Ubuntu or Debian, do the following:
sudo add-apt-repository ppa:sri-csl/formal-methods
sudo apt-get update
sudo apt-get install yices2
This will install the executables. If you also need the Yices library and header files, replace the last step with:
sudo apt-get install yices2-dev
To build Yices from the source, you need:
- GCC version 4.0.x or newer (or clang 3.0 or newer)
- gperf version 3.0 or newer
- the GMP library version 4.1 or newer
- other standard tools: make (gnumake is required), sed, etc.
To build the manual, you also need:
- a latex installation
- the latexmk tool
To build the on-line documentation, you need to install the Sphinx python package. The simplest method is:
sudo pip install sphinx
Sphinx 1.4.x or better is needed.
Do this:
autoconf
./configure
make
sudo make install
This will install binaries and libraries in /usr/local/. You can
change the installation location by giving option --prefix=... to
the ./configure script.
For more explanations, please check doc/COMPILING.
Yices supports non-linear real and integer arithmetic using a method known as Model-Constructing Satisfiability (MC-SAT), but this is not enabled by default. The MC-SAT solver also supports other theories and theory combination. We are currently extending it to handle bit-vector constraints.
If you want the MC-SAT solver, follow these instructions:
-
Install SRI's library for polynomial manipulation. It's available on github.
-
Install the CUDD library for binary-decision diagrams. We recommend using the github distribution: https://github.com/ivmai/cudd.
-
After you've installed libpoly and CUDD, add option
--enable-mcsatto the configure command. In details, type this in the toplevel Yices directory:
autoconf
./configure --enable-mcsat
make
sudo make install
- You may need to provide
LDFLAGS/CPPFLAGSif./configurefails to find the libpoly or CUDD libraries. Other options may be useful too. Try./configure --helpto see what's there.
The Yices library is not thread safe by default, if you need a re-entrant version:
autoconf
./configure --enable-thread-safety
make
sudo make install
If configured with --enable-thread-safety the Yices library will be thread
safe in the following sense: as long as the creation and manipulation of
each context and each model is restricted to a single thread, there should be no races.
In particular separate threads can create their own contexts, and manipulate and check
them without impeding another thread's progress.
NOTE: --enable-mcsat and --enable-thread-safety are currently incompatible.
We recommend compiling using Cygwin. If you want a version that works natively on Windows (i.e., does not depend on the Cygwin DLLs), you can compile from Cygwin using the MinGW cross-compilers. This is explained in doc/COMPILING.
To build the manual from the source, type
make doc
This will build ./doc/manual/manual.pdf.
Other documentation is in the ./doc directory:
doc/COMPILING