Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion benchmark/examples/benchmark_all_gather_gemm_pull.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,9 @@ def worker(rank: int, world_size: int, init_url: str, args: argparse.Namespace):
This function will be executed by each spawned process.
"""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=rank)
dist.init_process_group(
backend=backend, init_method=init_url, world_size=world_size, rank=rank, device_id=torch.device(f"cuda:{rank}")
)

shmem = iris.iris(args.heap_size)
torch.cuda.set_device(rank)
Expand Down
4 changes: 3 additions & 1 deletion benchmark/examples/benchmark_all_gather_gemm_push.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,9 @@ def worker(rank: int, world_size: int, init_url: str, args: argparse.Namespace):
This function will be executed by each spawned process.
"""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=rank)
dist.init_process_group(
backend=backend, init_method=init_url, world_size=world_size, rank=rank, device_id=torch.device(f"cuda:{rank}")
)

shmem = iris.iris(args.heap_size)
torch.cuda.set_device(rank)
Expand Down
4 changes: 3 additions & 1 deletion benchmark/examples/benchmark_flash_decode.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,9 @@ def prepare_perf_data(cfg, num_query_heads, num_kv_heads):

def run_benchmark(rank, world_size, init_url, args):
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=rank)
dist.init_process_group(
backend=backend, init_method=init_url, world_size=world_size, rank=rank, device_id=torch.device(f"cuda:{rank}")
)
# Set the correct GPU for this specific process
torch.cuda.set_device(rank)

Expand Down
8 changes: 7 additions & 1 deletion examples/00_load/load_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -235,7 +235,13 @@ def print_bandwidth_matrix(matrix, label="Unidirectional LOAD bandwidth GiB/s [R
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

# Main benchmark logic
shmem = iris.iris(args["heap_size"])
Expand Down
8 changes: 7 additions & 1 deletion examples/01_store/store_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -208,7 +208,13 @@ def print_bandwidth_matrix(matrix, label="Unidirectional STORE bandwidth GiB/s [
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

# Main benchmark logic
shmem = iris.iris(args["heap_size"])
Expand Down
8 changes: 7 additions & 1 deletion examples/02_all_load/all_load_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -316,7 +316,13 @@ def print_bandwidth_matrix(
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

# Main benchmark logic
heap_size = args["heap_size"]
Expand Down
8 changes: 7 additions & 1 deletion examples/03_all_store/all_store_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -245,7 +245,13 @@ def print_bandwidth_matrix(
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

# Main benchmark logic
heap_size = args["heap_size"]
Expand Down
8 changes: 7 additions & 1 deletion examples/04_atomic_add/atomic_add_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -206,7 +206,13 @@ def print_bandwidth_matrix(
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

# Main benchmark logic
shmem = iris.iris(args["heap_size"])
Expand Down
8 changes: 7 additions & 1 deletion examples/05_atomic_xchg/atomic_xchg_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,13 @@ def print_bandwidth_matrix(
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

# Main benchmark logic
shmem = iris.iris(args["heap_size"])
Expand Down
8 changes: 7 additions & 1 deletion examples/06_message_passing/message_passing_load_store.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,13 @@ def parse_args():
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

# Main benchmark logic
shmem = iris.iris(args["heap_size"])
Expand Down
8 changes: 7 additions & 1 deletion examples/06_message_passing/message_passing_put.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,13 @@ def parse_args():
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

# Main benchmark logic
shmem = iris.iris(args["heap_size"])
Expand Down
8 changes: 7 additions & 1 deletion examples/07_gemm_all_scatter/benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,13 @@ def parse_args():
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

# Main benchmark logic
shmem = iris.iris(args["heap_size"])
Expand Down
8 changes: 7 additions & 1 deletion examples/08_gemm_atomics_all_reduce/benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,13 @@ def parse_args():
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

# Main benchmark logic
shmem = iris.iris(args["heap_size"])
Expand Down
8 changes: 7 additions & 1 deletion examples/09_gemm_one_shot_all_reduce/benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,13 @@ def parse_args():
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

shmem = iris.iris(args["heap_size"])
rank = shmem.get_rank()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,13 @@ def parse_args():
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

shmem = iris.iris(args["heap_size"])
rank = shmem.get_rank()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,13 @@ def parse_args():
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

shmem = iris.iris(args["heap_size"])
rank = shmem.get_rank()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,13 @@ def parse_args():
def _worker(local_rank: int, world_size: int, init_url: str, args: dict):
"""Worker function for PyTorch distributed execution."""
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=local_rank)
dist.init_process_group(
backend=backend,
init_method=init_url,
world_size=world_size,
rank=local_rank,
device_id=torch.device(f"cuda:{local_rank}"),
)

shmem = iris.iris(args["heap_size"])
rank = shmem.get_rank()
Expand Down
4 changes: 3 additions & 1 deletion examples/13_flash_decode/example_run.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,9 @@ def setup_example_data(rank, world_size, args, dtype):

def example_run(rank: int, world_size: int, init_url: str, args: dict):
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=rank)
dist.init_process_group(
backend=backend, init_method=init_url, world_size=world_size, rank=rank, device_id=torch.device(f"cuda:{rank}")
)

# 1. Initialize Iris for distributed communication
shmem = iris.iris()
Expand Down
4 changes: 3 additions & 1 deletion examples/14_all_gather_gemm/example_run_pull.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,9 @@ def setup_example_data(rank, world_size, args, dtype):

def example_run(rank: int, world_size: int, init_url: str, args: argparse.Namespace):
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=rank)
dist.init_process_group(
backend=backend, init_method=init_url, world_size=world_size, rank=rank, device_id=torch.device(f"cuda:{rank}")
)

# Initialize Iris for distributed communication
shmem = iris.iris()
Expand Down
4 changes: 3 additions & 1 deletion examples/14_all_gather_gemm/example_run_push.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,9 @@ def setup_example_data(rank, world_size, args, dtype):

def example_run(rank: int, world_size: int, init_url: str, args: argparse.Namespace):
backend = "nccl" if torch.cuda.is_available() else "gloo"
dist.init_process_group(backend=backend, init_method=init_url, world_size=world_size, rank=rank)
dist.init_process_group(
backend=backend, init_method=init_url, world_size=world_size, rank=rank, device_id=torch.device(f"cuda:{rank}")
)

shmem = iris.iris()
torch.manual_seed(42)
Expand Down
4 changes: 3 additions & 1 deletion examples/benchmark/reference/all_gather.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
import random
import iris
import argparse
import os

from examples.common.utils import JSONWriter

Expand Down Expand Up @@ -53,7 +54,8 @@ def main():
validate = args["validate"]
benchmark = args["benchmark"]

dist.init_process_group("nccl")
local_rank = int(os.environ.get("LOCAL_RANK", 0))
dist.init_process_group("nccl", device_id=torch.device(f"cuda:{local_rank}"))

rank = dist.get_rank()
world_size = dist.get_world_size()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,9 @@ def parse_args():


def worker(rank: int, world_size: int, init_url: str, args: argparse.Namespace):
dist.init_process_group(backend="nccl", init_method=init_url, world_size=world_size, rank=rank)
dist.init_process_group(
backend="nccl", init_method=init_url, world_size=world_size, rank=rank, device_id=torch.device(f"cuda:{rank}")
)
torch.cuda.set_device(rank)

output_dir = args.output_dir
Expand Down
4 changes: 3 additions & 1 deletion examples/benchmark/reference/all_reduce.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
import random
import iris
import argparse
import os

from examples.common.utils import JSONWriter

Expand Down Expand Up @@ -52,7 +53,8 @@ def main():
validate = args["validate"]
benchmark = args["benchmark"]

dist.init_process_group("nccl")
local_rank = int(os.environ.get("LOCAL_RANK", 0))
dist.init_process_group("nccl", device_id=torch.device(f"cuda:{local_rank}"))

rank = dist.get_rank()
world_size = dist.get_world_size()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,8 @@ def prepare_perf_data(config, num_query_heads, num_kv_heads, page_size, datatype


def run_benchmark(args):
dist.init_process_group(backend="nccl")
local_rank = int(os.environ["LOCAL_RANK"])
dist.init_process_group(backend="nccl", device_id=torch.device(f"cuda:{local_rank}"))
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
Expand Down
4 changes: 3 additions & 1 deletion examples/benchmark/reference/reduce_scatter.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
import random
import iris
import argparse
import os

from examples.common.utils import JSONWriter

Expand Down Expand Up @@ -43,7 +44,8 @@ def main():
m, n, k = args["m"], args["n"], args["k"]
validate, benchmark = args["validate"], args["benchmark"]

dist.init_process_group("nccl")
local_rank = int(os.environ.get("LOCAL_RANK", 0))
dist.init_process_group("nccl", device_id=torch.device(f"cuda:{local_rank}"))
rank = dist.get_rank()
world_size = dist.get_world_size()
torch.cuda.set_device(rank)
Expand Down
Loading