Skip to content

Releases: PSLmodels/OG-Core

0.15.0

15 Dec 21:55
83227e3

Choose a tag to compare

This release:

  • Adds a new parameter baseline_theta to the Parameters class that allows the user to specify whether to use the steady-state replacement rate parameters from the baseline solution in a reform run. See PR #1077.

0.14.14

24 Nov 21:50
cb0e9df

Choose a tag to compare

This release:

  • Create SS.SS_initial_guesses function to allow more flexible initial guesses for steady state solution (PR #1061)
  • Robust steady-state solution used for reform solution (PR #1061)
  • Test of SS.solve_for_j function (PR #1061)

0.14.13

21 Nov 06:42
9aafbbd

Choose a tag to compare

This release:

  • Fix calculation of consumption tax revenue with differentiated goods (PR #1074)

0.14.12

14 Nov 21:44
b5a3ebd

Choose a tag to compare

This release:

  • Uses data for pre-time path population distribution (rather than inferring it) (PR #1071)

0.14.11

10 Nov 22:37
df7b128

Choose a tag to compare

This release:

  • Adds Ethiopia demographic data mapping.

0.14.10

11 Sep 09:28
ab0497d

Choose a tag to compare

This release:

  • Fixes nonconformable matrices in TPI.py introduced in version 0.14.9 (PR #1054)

0.14.9

11 Sep 02:35
e42d4e5

Choose a tag to compare

This release:

  • Fixes replacement_rate_adjustment parameter in the steady state (PR #1053)
  • Adds some saved output to tpi_vars.pkl object (PR #1054)

0.14.8

28 Aug 01:00
938073b

Choose a tag to compare

This release:

  • Adds a complete benchmark suite for measuring and optimizing Dask performance in OG-Core, with particular focus on Windows performance issues.
  • New and updated files:
    • tests/test_dask_benchmarks.py: Mock benchmark tests with synthetic workloads
    • tests/test_real_txfunc_benchmarks.py: Real-world tax function benchmarks
    • tests/run_benchmarks.py: Automated benchmark runner with reporting
    • tests/BENCHMARK_README.md: Comprehensive documentation and usage guide
    • pytest.ini: Updated with benchmark test markers
  • Key features:
    • Platform-specific optimization tests (Windows, macOS, Linux)
    • Memory usage and compute time benchmarking
    • Baseline establishment and performance regression detection
    • Comparison of different Dask schedulers and client configurations
    • Real tax function estimation performance measurement
    • Automated identification of optimal Dask settings per platform
  • Benefits:
    • Establishes performance baselines before optimization work
    • Identifies Windows-specific Dask performance bottlenecks
    • Provides automated regression detection for future changes
    • Enables data-driven optimization decisions
    • Supports continuous performance monitoring
  • Usage:
    • python tests/run_benchmarks.py # Run all benchmarks
    • python tests/run_benchmarks.py --quick # Quick benchmarks only
    • python tests/run_benchmarks.py --save-baseline # Save performance baseline
    • python tests/run_benchmarks.py --compare-baseline # Compare against baseline
  • 🤖 Generated with help from Claude Code

0.14.7

21 Aug 23:16
ef6695e

Choose a tag to compare

This release:

  • Refactors calls to dask in SS.py and TPI.py. See PR #1048.

0.14.6

16 Aug 00:36
759afbf

Choose a tag to compare

  • Removes initial_guess_w_SS in default_parameters.json
  • Updates environment and testing to cover Python 3.13