Skip to content

First version of cuda.bindings.path_finder #578

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 58 commits into
base: main
Choose a base branch
from

Conversation

rwgk
Copy link
Collaborator

@rwgk rwgk commented Apr 25, 2025

Description

Major milestone for the work tracked under #451

This PR introduces only two public APIs:

  • cuda.bindings.path_finder.SUPPORTED_LIBNAMES (currently ('nvJitLink', 'nvrtc', 'nvvm'))
  • cuda.bindings.path_finder.load_nvidia_dynamic_library(libname: str) -> LoadedDL

With:

@dataclass                                                                      
class LoadedDL:                                                                 
    handle: int                                                                 
    abs_path: Optional[str]                                                     
    was_already_loaded_from_elsewhere: bool                                     

However, the implementations were actually thoroughly tested (under #558) for all

SUPPORTED_LIBNAMES + PARTIALLY_SUPPORTED_LIBNAMES

enumerated under cuda.bindings._path_finder.supported_libs (note that this module is private).

To make this PR easier to review, the changes to the nvJitLink, nvrtc, and nvvm bindings are NOT included in this PR. Those changes were also already tested under #558. They will be merged into main with two follow-on PRs (one for the nvrtc bindings, one for nvJitLink and nvvm).

Thorough testing of all SUPPORTED_LIBNAMES + PARTIALLY_SUPPORTED_LIBNAMES requires changes to the GitHub Actions configs, to set up suitable CTK installations. This will also be handled separately in follow-on PRs.


Suggested order for reviewing files:

  • cuda/bindings/_path_finder/supported_libs.py
  • cuda/bindings/_path_finder/load_nvidia_dynamic_library.py
  • cuda/bindings/_path_finder/load_dl_common.py
  • cuda/bindings/_path_finder/load_dl_linux.py
  • cuda/bindings/_path_finder/load_dl_windows.py
  • tests/test_path_finder.py
  • cuda/bindings/_path_finder/find_nvidia_dynamic_library.py
  • everything else

Discussion points:

  • Copyright notice for cuda/bindings/_path_finder/cuda_paths.py (the original file under numba-cuda does not have one)
  • Documentation for the new public APIs
  • Documentation for maintaining SUPPORTED_LIBNAMES + PARTIALLY_SUPPORTED_LIBNAMES as new CTK versions are released

rwgk and others added 6 commits April 9, 2025 11:33
* Unmodified copies of:

* https://github.com/NVIDIA/numba-cuda/blob/bf487d78a40eea87f009d636882a5000a7524c95/numba_cuda/numba/cuda/cuda_paths.py

* https://github.com/numba/numba/blob/f0d24824fcd6a454827e3c108882395d00befc04/numba/misc/findlib.py

* Add Forked from URLs.

* Strip down cuda_paths.py to minimum required for `_get_nvvm_path()`

Tested interactively with:
```
import cuda_paths
nvvm_path = cuda_paths._get_nvvm_path()
print(f"{nvvm_path=}")
```

* ruff auto-fixes (NO manual changes)

* Make `get_nvvm_path()` a pubic API (i.e. remove leading underscore).

* Fetch numba-cuda/numba_cuda/numba/cuda/cuda_paths.py from NVIDIA/numba-cuda#155 AS-IS

* ruff format NO MANUAL CHANGES

* Minimal changes to adapt numba-cuda/numba_cuda/numba/cuda/cuda_paths.py from NVIDIA/numba-cuda#155

* Rename ecosystem/cuda_paths.py -> path_finder.py

* Plug cuda.bindings.path_finder into cuda/bindings/_internal/nvvm_linux.pyx

* Plug cuda.bindings.path_finder into cuda/bindings/_internal/nvjitlink_linux.pyx

* Fix `os.path.exists(None)` issue:

```
______________________ ERROR collecting test_nvjitlink.py ______________________
tests/test_nvjitlink.py:62: in <module>
    not check_nvjitlink_usable(), reason="nvJitLink not usable, maybe not installed or too old (<12.3)"
tests/test_nvjitlink.py:58: in check_nvjitlink_usable
    return inner_nvjitlink._inspect_function_pointer("__nvJitLinkVersion") != 0
cuda/bindings/_internal/nvjitlink.pyx:257: in cuda.bindings._internal.nvjitlink._inspect_function_pointer
    ???
cuda/bindings/_internal/nvjitlink.pyx:260: in cuda.bindings._internal.nvjitlink._inspect_function_pointer
    ???
cuda/bindings/_internal/nvjitlink.pyx:208: in cuda.bindings._internal.nvjitlink._inspect_function_pointers
    ???
cuda/bindings/_internal/nvjitlink.pyx:102: in cuda.bindings._internal.nvjitlink._check_or_init_nvjitlink
    ???
cuda/bindings/_internal/nvjitlink.pyx:59: in cuda.bindings._internal.nvjitlink.load_library
    ???
/opt/hostedtoolcache/Python/3.13.2/x64/lib/python3.13/site-packages/cuda/bindings/path_finder.py:312: in get_cuda_paths
    "nvvm": _get_nvvm_path(),
/opt/hostedtoolcache/Python/3.13.2/x64/lib/python3.13/site-packages/cuda/bindings/path_finder.py:285: in _get_nvvm_path
    by, path = _get_nvvm_path_decision()
/opt/hostedtoolcache/Python/3.13.2/x64/lib/python3.13/site-packages/cuda/bindings/path_finder.py:96: in _get_nvvm_path_decision
    if os.path.exists(nvvm_ctk_dir):
<frozen genericpath>:19: in exists
    ???
E   TypeError: stat: path should be string, bytes, os.PathLike or integer, not NoneType
```

* Fix another `os.path.exists(None)` issue:

```
______________________ ERROR collecting test_nvjitlink.py ______________________
tests/test_nvjitlink.py:62: in <module>
    not check_nvjitlink_usable(), reason="nvJitLink not usable, maybe not installed or too old (<12.3)"
tests/test_nvjitlink.py:58: in check_nvjitlink_usable
    return inner_nvjitlink._inspect_function_pointer("__nvJitLinkVersion") != 0
cuda/bindings/_internal/nvjitlink.pyx:257: in cuda.bindings._internal.nvjitlink._inspect_function_pointer
    ???
cuda/bindings/_internal/nvjitlink.pyx:260: in cuda.bindings._internal.nvjitlink._inspect_function_pointer
    ???
cuda/bindings/_internal/nvjitlink.pyx:208: in cuda.bindings._internal.nvjitlink._inspect_function_pointers
    ???
cuda/bindings/_internal/nvjitlink.pyx:102: in cuda.bindings._internal.nvjitlink._check_or_init_nvjitlink
    ???
cuda/bindings/_internal/nvjitlink.pyx:59: in cuda.bindings._internal.nvjitlink.load_library
    ???
/opt/hostedtoolcache/Python/3.13.2/x64/lib/python3.13/site-packages/cuda/bindings/path_finder.py:313: in get_cuda_paths
    "libdevice": _get_libdevice_paths(),
/opt/hostedtoolcache/Python/3.13.2/x64/lib/python3.13/site-packages/cuda/bindings/path_finder.py:126: in _get_libdevice_paths
    by, libdir = _get_libdevice_path_decision()
/opt/hostedtoolcache/Python/3.13.2/x64/lib/python3.13/site-packages/cuda/bindings/path_finder.py:73: in _get_libdevice_path_decision
    if os.path.exists(libdevice_ctk_dir):
<frozen genericpath>:19: in exists
    ???
E   TypeError: stat: path should be string, bytes, os.PathLike or integer, not NoneType
```

* Change "/lib64/" → "/lib/" in nvjitlink_linux.pyx

* nvjitlink_linux.pyx load_library() enhancements, mainly to avoid os.path.join(None, "libnvJitLink.so")

* Add missing f-string f

* Add back get_nvjitlink_dso_version_suffix() call.

* pytest -ra -s -v

* Rewrite nvjitlink_linux.pyx load_library() to produce detailed error messages.

* Attach listdir output to "Unable to load" exception message.

* Guard os.listdir() call with os.path.isdir()

* Fix logic error in nvjitlink_linux.pyx load_library()

* Move path_finder.py to _path_finder_utils/cuda_paths.py, import only public functions from new path_finder.py

* Add find_nvidia_dynamic_library() and use from nvjitlink_linux.pyx, nvvm_linux.pyx

* Fix oversight in _find_using_lib_dir()

* Also look for versioned library in _find_using_nvidia_lib_dirs()

* glob.glob() Python 3.9 compatibility

* Reduce build-and-test.yml to Windows-only, Python 3.12 only.

* Comment out `if: ${{ github.repository_owner == nvidia }}`

* Revert "Comment out `if: ${{ github.repository_owner == nvidia }}`"

This reverts commit b0db24f.

* Add back `linux-64` `host-platform`

* Rewrite load_library() in nvjitlink_windows.pyx to use path_finder.find_nvidia_dynamic_library()

* Revert "Rewrite load_library() in nvjitlink_windows.pyx to use path_finder.find_nvidia_dynamic_library()"

This reverts commit 1bb7151.

* Add _inspect_environment() in find_nvidia_dynamic_library.py, call from nvjitlink_windows.pyx, nvvm_windows.pyx

* Add & use _find_dll_using_nvidia_bin_dirs(), _find_dll_using_cudalib_dir()

* Fix silly oversight: forgot to undo experimental change.

* Also reduce test test-linux matrix.

* Reimplement load_library() functions in nvjitlink_windows.pyx, nvvm_windows.pyx to actively use path_finder.find_nvidia_dynamic_library()

* Factor out load_nvidia_dynamic_library() from _internal/nvjitlink_linux.pyx, nvvm_linux.pyx

* Generalize load_nvidia_dynamic_library.py to also work under Windows.

* Add `void*` return type to load_library() implementations in _internal/nvjitlink_windows.pyx, nvvm_windows.pyx

* Resolve cython error: object handle vs `void*` handle

```
    Error compiling Cython file:
    ------------------------------------------------------------
    ...
            err = (<int (*)(int*) nogil>__cuDriverGetVersion)(&driver_ver)
            if err != 0:
                raise RuntimeError('something went wrong')
            # Load library
            handle = load_library(driver_ver)
                                 ^
    ------------------------------------------------------------
    cuda\bindings\_internal\nvjitlink.pyx:72:29: Cannot convert 'void *' to Python object
```

* Resolve another cython error: `void*` handle vs `intptr_t` handle

```
    Error compiling Cython file:
    ------------------------------------------------------------
    ...
            handle = load_library(driver_ver)

            # Load function
            global __nvJitLinkCreate
            try:
                __nvJitLinkCreate = <void*><intptr_t>win32api.GetProcAddress(handle, 'nvJitLinkCreate')
                                                                             ^
    ------------------------------------------------------------

    cuda\bindings\_internal\nvjitlink.pyx:78:73: Cannot convert 'void *' to Python object
```

* Resolve signed/unsigned runtime error. Use uintptr_t consistently.

https://github.com/NVIDIA/cuda-python/actions/runs/14224673173/job/39861750852?pr=447#logs

```
=================================== ERRORS ====================================
_____________________ ERROR collecting test_nvjitlink.py ______________________
tests\test_nvjitlink.py:62: in <module>
    not check_nvjitlink_usable(), reason="nvJitLink not usable, maybe not installed or too old (<12.3)"
tests\test_nvjitlink.py:58: in check_nvjitlink_usable
    return inner_nvjitlink._inspect_function_pointer("__nvJitLinkVersion") != 0
cuda\\bindings\\_internal\\nvjitlink.pyx:221: in cuda.bindings._internal.nvjitlink._inspect_function_pointer
    ???
cuda\\bindings\\_internal\\nvjitlink.pyx:224: in cuda.bindings._internal.nvjitlink._inspect_function_pointer
    ???
cuda\\bindings\\_internal\\nvjitlink.pyx:172: in cuda.bindings._internal.nvjitlink._inspect_function_pointers
    ???
cuda\\bindings\\_internal\\nvjitlink.pyx:73: in cuda.bindings._internal.nvjitlink._check_or_init_nvjitlink
    ???
cuda\\bindings\\_internal\\nvjitlink.pyx:46: in cuda.bindings._internal.nvjitlink.load_library
    ???
E   OverflowError: can't convert negative value to size_t
```

* Change <void*><uintptr_t>win32api.GetProcAddress` back to `intptr_t`. Changing load_nvidia_dynamic_library() to also use to-`intptr_t` conversion, for compatibility with win32api.GetProcAddress. Document that CDLL behaves differently (it uses to-`uintptr_t`).

* Use win32api.LoadLibrary() instead of ctypes.windll.kernel32.LoadLibraryW(), to be more similar to original (and working) cython code.

Hoping to resolve this kind of error:

```
_ ERROR at setup of test_c_or_v_program_fail_bad_option[txt-compile_program] __

request = <SubRequest 'minimal_nvvmir' for <Function test_c_or_v_program_fail_bad_option[txt-compile_program]>>

    @pytest.fixture(params=MINIMAL_NVVMIR_FIXTURE_PARAMS)
    def minimal_nvvmir(request):
        for pass_counter in range(2):
            nvvmir = MINIMAL_NVVMIR_CACHE.get(request.param, -1)
            if nvvmir != -1:
                if nvvmir is None:
                    pytest.skip(f"UNAVAILABLE: {request.param}")
                return nvvmir
            if pass_counter:
                raise AssertionError("This code path is meant to be unreachable.")
            # Build cache entries, then try again (above).
>           major, minor, debug_major, debug_minor = nvvm.ir_version()

tests\test_nvvm.py:148:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
cuda\bindings\nvvm.pyx:95: in cuda.bindings.nvvm.ir_version
    cpdef tuple ir_version():
cuda\bindings\nvvm.pyx:113: in cuda.bindings.nvvm.ir_version
    status = nvvmIRVersion(&major_ir, &minor_ir, &major_dbg, &minor_dbg)
cuda\bindings\cynvvm.pyx:19: in cuda.bindings.cynvvm.nvvmIRVersion
    return _nvvm._nvvmIRVersion(majorIR, minorIR, majorDbg, minorDbg)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

>   ???
E   cuda.bindings._internal.utils.FunctionNotFoundError: function nvvmIRVersion is not found
```

* Remove debug print statements.

* Remove some cruft.

* Trivial renaming of variables. No functional changes.

* Revert debug changes under .github/workflows

* Rename _path_finder_utils → _path_finder

* Remove LD_LIBRARY_PATH in fetch_ctk/action.yml

* Linux: First try using the platform-specific dynamic loader search mechanisms

* Add _windows_load_with_dll_basename()

* Revert "Revert debug changes under .github/workflows"

This reverts commit cc6113c.

* Add debug prints in load_nvidia_dynamic_library()

* Report dlopen error for libnvrtc.so.12

* print("\nLOOOK dlfcn.dlopen('libnvrtc.so.12', dlfcn.RTLD_NOW)", flush=True)

* Revert "Remove LD_LIBRARY_PATH in fetch_ctk/action.yml"

This reverts commit 1b1139c.

* Only remove ${CUDA_PATH}/nvvm/lib64 from LD_LIBRARY_PATH

* Use path_finder.load_nvidia_dynamic_library("nvrtc") from cuda/bindings/_bindings/cynvrtc.pyx.in

* Somewhat ad hoc heuristics for nvidia_cuda_nvrtc wheels.

* Remove LD_LIBRARY_PATH entirely from .github/actions/fetch_ctk/action.yml

* Remove CUDA_PATH\nvvm\bin in .github/workflows/test-wheel-windows.yml

* Revert "Remove LD_LIBRARY_PATH entirely from .github/actions/fetch_ctk/action.yml"

This reverts commit bff8cf0.

* Revert "Somewhat ad hoc heuristics for nvidia_cuda_nvrtc wheels."

This reverts commit 43abec8.

* Restore cuda/bindings/_bindings/cynvrtc.pyx.in as-is on main

* Remove debug print from load_nvidia_dynamic_library.py

* Reapply "Revert debug changes under .github/workflows"

This reverts commit aaa6aff.
* Revert "Restore cuda/bindings/_bindings/cynvrtc.pyx.in as-is on main"

This reverts commit ba093f5.

* Revert "Reapply "Revert debug changes under .github/workflows""

This reverts commit 8f69f83.

* Also load nvrtc from cuda_bindings/tests/path_finder.py

* Add heuristics for nvidia_cuda_nvrtc Windows wheels.

Also fix a couple bugs discovered by ChatGPT:

* `glob.glob()` in this code return absolute paths.

* stray `error_messages = []`

* Add debug prints, mostly for `os.add_dll_directory(bin_dir)`

* Fix unfortunate silly oversight (import os missing under Windows)

* Use `win32api.LoadLibraryEx()` with suitable `flags`; also update `os.environ["PATH"]`

* Hard-wire WinBase.h constants (they are not exposed by win32con)

* Remove debug prints

* Reapply "Reapply "Revert debug changes under .github/workflows""

This reverts commit b002ff6.
* Revert "Reapply "Revert debug changes under .github/workflows""

This reverts commit 8f69f83.

* Add names of all CTK 12.8.1 x86_64-linux libraries (.so) as `path_finder.SUPPORTED_LIBNAMES`

https://chatgpt.com/share/67f98d0b-148c-8008-9951-9995cf5d860c

* Add `SUPPORTED_WINDOWS_DLLS`

* Add copyright notice

* Move SUPPORTED_LIBNAMES, SUPPORTED_WINDOWS_DLLS to _path_finder/supported_libs.py

* Use SUPPORTED_WINDOWS_DLLS in _windows_load_with_dll_basename()

* Change "Set up mini CTK" to use `method: local`, remove `sub-packages` line.

* Use Jimver/[email protected] also under Linux, `method: local`, no `sub-packages`.

* Add more `nvidia-*-cu12` wheels to get as many of the supported shared libraries as possible.

* Revert "Use Jimver/[email protected] also under Linux, `method: local`, no `sub-packages`."

This reverts commit d499806.

Problem observed:

```
/usr/bin/docker exec  1b42cd4ea3149ac3f2448eae830190ee62289b7304a73f8001e90cead5005102 sh -c "cat /etc/*release | grep ^ID"
Warning: Failed to restore: Cache service responded with 422
/usr/bin/tar --posix -cf cache.tgz --exclude cache.tgz -P -C /__w/cuda-python/cuda-python --files-from manifest.txt -z
Failed to save: Unable to reserve cache with key cuda_installer-linux-5.15.0-135-generic-x64-12.8.0, another job may be creating this cache. More details: This legacy service is shutting down, effective April 15, 2025. Migrate to the new service ASAP. For more information: https://gh.io/gha-cache-sunset
Warning: Error during installation: Error: Unable to locate executable file: sudo. Please verify either the file path exists or the file can be found within a directory specified by the PATH environment variable. Also check the file mode to verify the file is executable.
Error: Error: Unable to locate executable file: sudo. Please verify either the file path exists or the file can be found within a directory specified by the PATH environment variable. Also check the file mode to verify the file is executable.
```

* Change test_path_finder::test_find_and_load() to skip cufile on Windows, and report exceptions as failures, except for cudart

* Add nvidia-cuda-runtime-cu12 to pyproject.toml (for libname cudart)

* test_path_finder.py: before loading cusolver, load nvJitLink, cusparse, cublas (experiment to see if that resolves the only Windows failure)

Test (win-64, Python 3.12, CUDA 12.8.0, Runner default, CTK wheels) / test

```
================================== FAILURES ===================================
________________________ test_find_and_load[cusolver] _________________________

libname = 'cusolver'

    @pytest.mark.parametrize("libname", path_finder.SUPPORTED_LIBNAMES)
    def test_find_and_load(libname):
        if sys.platform == "win32" and libname == "cufile":
            pytest.skip(f'test_find_and_load("{libname}") not supported on this platform')
        print(f'\ntest_find_and_load("{libname}")')
        failures = []
        for algo, func in (
            ("find", path_finder.find_nvidia_dynamic_library),
            ("load", path_finder.load_nvidia_dynamic_library),
        ):
            try:
                out = func(libname)
            except Exception as e:
                out = f"EXCEPTION: {type(e)} {str(e)}"
                failures.append(algo)
            print(out)
        print()
>       assert not failures
E       AssertionError: assert not ['load']

tests\test_path_finder.py:29: AssertionError
```

* test_path_finder.py: load *only* nvJitLink before loading cusolver

* Run each test_find_or_load_nvidia_dynamic_library() subtest in a subprocess

* Add cublasLt to supported_libs.py and load deps for cusolver, cusolverMg, cusparse in test_path_finder.py. Also restrict test_path_finder.py to test load only for now.

* Add supported_libs.DIRECT_DEPENDENCIES

* Remove cufile_rdma from supported libs (comment out).

https://chatgpt.com/share/68033a33-385c-8008-a293-4c8cc3ea23ae

* Split out `PARTIALLY_SUPPORTED_LIBNAMES`. Fix up test code.

* Reduce public API to only load_nvidia_dynamic_library, SUPPORTED_LIBNAMES

* Set CUDA_BINDINGS_PATH_FINDER_TEST_ALL_LIBNAMES=1 to match expected availability of nvidia shared libraries.

* Refactor as `class _find_nvidia_dynamic_library`

* Strict wheel, conda, system rule: try using the platform-specific dynamic loader search mechanisms only last

* Introduce _load_and_report_path_linux(), add supported_libs.EXPECTED_LIB_SYMBOLS

* Plug in ctypes.windll.kernel32.GetModuleFileNameW()

* Keep track of nvrtc-related GitHub comment

* Factor out `_find_dll_under_dir(dirpath, file_wild)` and reuse from `_find_dll_using_nvidia_bin_dirs()`, `_find_dll_using_cudalib_dir()` (to fix loading nvrtc64_120_0.dll from local CTK)

* Minimal "is already loaded" code.

* Add THIS FILE NEEDS TO BE REVIEWED/UPDATED FOR EACH CTK RELEASE comment in _path_finder/supported_libs.py

* Add SUPPORTED_LINUX_SONAMES in _path_finder/supported_libs.py

* Update SUPPORTED_WINDOWS_DLLS in _path_finder/supported_libs.py based on DLLs found in cuda_*win*.exe files.

* Remove `os.add_dll_directory()` and `os.environ["PATH"]` manipulations from find_nvidia_dynamic_library.py. Add `supported_libs.LIBNAMES_REQUIRING_OS_ADD_DLL_DIRECTORY` and use from `load_nvidia_dynamic_library()`.

* Move nvrtc-specific code from find_nvidia_dynamic_library.py to `supported_libs.is_suppressed_dll_file()`

* Introduce dataclass LoadedDL as return type for load_nvidia_dynamic_library()

* Factor out _abs_path_for_dynamic_library_* and use on handle obtained through "is already loaded" checks

* Factor out _load_nvidia_dynamic_library_no_cache() and use for exercising LoadedDL.was_already_loaded_from_elsewhere

* _check_nvjitlink_usable() in test_path_finder.py

* Undo changes in .github/workflows/ and cuda_bindings/pyproject.toml

* Move cuda_bindings/tests/path_finder.py -> toolshed/run_cuda_bindings_path_finder.py

* Add bandit suppressions in test_path_finder.py

* Add pytest info_summary_append fixture and use from test_path_finder.py to report the absolute paths of the loaded libraries.
Copy link
Contributor

copy-pr-bot bot commented Apr 25, 2025

Auto-sync is disabled for ready for review pull requests in this repository. Workflows must be run manually.

Contributors can view more details about this message here.

@rwgk
Copy link
Collaborator Author

rwgk commented Apr 25, 2025

/ok to test 17478da

Copy link

@rwgk
Copy link
Collaborator Author

rwgk commented Apr 25, 2025

/ok to test 7da74bd

@leofang leofang assigned leofang and rwgk and unassigned leofang Apr 25, 2025
@leofang leofang self-requested a review April 25, 2025 19:34
@leofang leofang added cuda.bindings Everything related to the cuda.bindings module P0 High priority - Must do! feature New feature or request labels Apr 25, 2025
@leofang leofang added this to the cuda-python parking lot milestone Apr 25, 2025
@rwgk
Copy link
Collaborator Author

rwgk commented Apr 25, 2025

/ok to test a649e7d

@rwgk
Copy link
Collaborator Author

rwgk commented Apr 25, 2025

For completeness:

I used these command while working on commit a649e7d:

0db6015-lcedt.nvidia.com:~/ctk_downloads/extracted $ sos=`find . -type f -name 'libnvJitLink.so*' | sort`
0db6015-lcedt.nvidia.com:~/ctk_downloads/extracted $ for so in $sos; do echo $so; nm --defined-only -D $so | grep nvJitLinkVersion; done
./12.0.1_525.85.12/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.0.140
./12.1.1_530.30.02/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.1.105
./12.2.2_535.104.05/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.2.140
./12.2.2_535.104.05/libnvjitlink/targets/x86_64-linux/lib/stubs/libnvJitLink.so
./12.3.2_545.23.08/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.3.101
000000000025ed30 T nvJitLinkVersion@@libnvJitLink.so.12
./12.3.2_545.23.08/libnvjitlink/targets/x86_64-linux/lib/stubs/libnvJitLink.so
00000000000017da T nvJitLinkVersion@@libnvJitLink.so.12
./12.4.1_550.54.15/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.4.127
0000000000265220 T nvJitLinkVersion@@libnvJitLink.so.12
./12.4.1_550.54.15/libnvjitlink/targets/x86_64-linux/lib/stubs/libnvJitLink.so
0000000000001bd7 T nvJitLinkVersion@@libnvJitLink.so.12
./12.5.1_555.42.06/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.5.82
00000000002923b0 T nvJitLinkVersion@@libnvJitLink.so.12
./12.5.1_555.42.06/libnvjitlink/targets/x86_64-linux/lib/stubs/libnvJitLink.so
0000000000002064 T nvJitLinkVersion@@libnvJitLink.so.12
./12.6.2_560.35.03/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.6.77
0000000000264200 T nvJitLinkVersion@@libnvJitLink.so.12
./12.6.2_560.35.03/libnvjitlink/targets/x86_64-linux/lib/stubs/libnvJitLink.so
00000000000023f0 T nvJitLinkVersion@@libnvJitLink.so.12
./12.8.1_570.124.06/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.8.93
00000000004ba630 T nvJitLinkVersion@@libnvJitLink.so.12
./12.8.1_570.124.06/libnvjitlink/targets/x86_64-linux/lib/stubs/libnvJitLink.so
0000000000002c1a T nvJitLinkVersion@@libnvJitLink.so.12
0db6015-lcedt.nvidia.com:~/ctk_downloads/extracted $ for so in $sos; do echo $so; nm --defined-only -D $so | grep __nvJitLinkCreate_12_0; done
./12.0.1_525.85.12/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.0.140
0000000000226010 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.1.1_530.30.02/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.1.105
00000000002438d0 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.2.2_535.104.05/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.2.140
0000000000256fa0 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.2.2_535.104.05/libnvjitlink/targets/x86_64-linux/lib/stubs/libnvJitLink.so
0000000000000d39 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.3.2_545.23.08/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.3.101
000000000025ed60 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.3.2_545.23.08/libnvjitlink/targets/x86_64-linux/lib/stubs/libnvJitLink.so
0000000000001389 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.4.1_550.54.15/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.4.127
0000000000265250 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.4.1_550.54.15/libnvjitlink/targets/x86_64-linux/lib/stubs/libnvJitLink.so
00000000000016a9 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.5.1_555.42.06/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.5.82
00000000002923e0 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.5.1_555.42.06/libnvjitlink/targets/x86_64-linux/lib/stubs/libnvJitLink.so
0000000000001a59 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.6.2_560.35.03/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.6.77
0000000000264230 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.6.2_560.35.03/libnvjitlink/targets/x86_64-linux/lib/stubs/libnvJitLink.so
0000000000001d08 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.8.1_570.124.06/libnvjitlink/targets/x86_64-linux/lib/libnvJitLink.so.12.8.93
00000000004ba660 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12
./12.8.1_570.124.06/libnvjitlink/targets/x86_64-linux/lib/stubs/libnvJitLink.so
0000000000002378 T __nvJitLinkCreate_12_0@@libnvJitLink.so.12

@rwgk
Copy link
Collaborator Author

rwgk commented Apr 25, 2025

Test results for commit a649e7d:

$ python path_finder_abs_path_from_test_info.py Test*.txt
Test__linux-64__Python_3.10__CUDA_11.8.0__Runner_default__CTK_wheels____test.txt
Test__linux-64__Python_3.10__CUDA_11.8.0__Runner_default__local_CTK____test.txt
Test__linux-64__Python_3.11__CUDA_11.8.0__Runner_default__CTK_wheels____test.txt
Test__linux-64__Python_3.11__CUDA_11.8.0__Runner_default__local_CTK____test.txt
Test__linux-64__Python_3.12__CUDA_11.8.0__Runner_default__CTK_wheels____test.txt
Test__linux-64__Python_3.12__CUDA_11.8.0__Runner_default__local_CTK____test.txt
Test__linux-64__Python_3.13__CUDA_11.8.0__Runner_default__CTK_wheels____test.txt
Test__linux-64__Python_3.13__CUDA_11.8.0__Runner_default__local_CTK____test.txt
Test__linux-64__Python_3.9__CUDA_11.8.0__Runner_default__CTK_wheels____test.txt
Test__linux-64__Python_3.9__CUDA_11.8.0__Runner_default__local_CTK____test.txt
Test__linux-aarch64__Python_3.10__CUDA_11.8.0__Runner_default__CTK_wheels____test.txt
Test__linux-aarch64__Python_3.10__CUDA_11.8.0__Runner_default__local_CTK____test.txt
Test__linux-aarch64__Python_3.11__CUDA_11.8.0__Runner_default__CTK_wheels____test.txt
Test__linux-aarch64__Python_3.11__CUDA_11.8.0__Runner_default__local_CTK____test.txt
Test__linux-aarch64__Python_3.12__CUDA_11.8.0__Runner_default__CTK_wheels____test.txt
Test__linux-aarch64__Python_3.12__CUDA_11.8.0__Runner_default__local_CTK____test.txt
Test__linux-aarch64__Python_3.13__CUDA_11.8.0__Runner_default__CTK_wheels____test.txt
Test__linux-aarch64__Python_3.13__CUDA_11.8.0__Runner_default__local_CTK____test.txt
Test__linux-aarch64__Python_3.9__CUDA_11.8.0__Runner_default__CTK_wheels____test.txt
Test__linux-aarch64__Python_3.9__CUDA_11.8.0__Runner_default__local_CTK____test.txt
Test__win-64__Python_3.12__CUDA_11.8.0__Runner_default__CTK_wheels____test.txt
Test__win-64__Python_3.12__CUDA_11.8.0__Runner_default__local_CTK____test.txt
Test__linux-64__Python_3.10__CUDA_12.0.1__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-64__Python_3.10__CUDA_12.8.0__Runner_default__CTK_wheels____test.txt
    /opt/hostedtoolcache/Python/3.10.17/x64/lib/python3.10/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12
    /opt/hostedtoolcache/Python/3.10.17/x64/lib/python3.10/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12
    /opt/hostedtoolcache/Python/3.10.17/x64/lib/python3.10/site-packages/nvidia/cuda_nvcc/nvvm/lib64/libnvvm.so
Test__linux-64__Python_3.10__CUDA_12.8.0__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-64__Python_3.11__CUDA_12.0.1__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-64__Python_3.11__CUDA_12.8.0__Runner_default__CTK_wheels____test.txt
    /opt/hostedtoolcache/Python/3.11.12/x64/lib/python3.11/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12
    /opt/hostedtoolcache/Python/3.11.12/x64/lib/python3.11/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12
    /opt/hostedtoolcache/Python/3.11.12/x64/lib/python3.11/site-packages/nvidia/cuda_nvcc/nvvm/lib64/libnvvm.so
Test__linux-64__Python_3.11__CUDA_12.8.0__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-64__Python_3.12__CUDA_12.0.1__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-64__Python_3.12__CUDA_12.8.0__Runner_H100__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-64__Python_3.12__CUDA_12.8.0__Runner_default__CTK_wheels____test.txt
    /opt/hostedtoolcache/Python/3.12.10/x64/lib/python3.12/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12
    /opt/hostedtoolcache/Python/3.12.10/x64/lib/python3.12/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12
    /opt/hostedtoolcache/Python/3.12.10/x64/lib/python3.12/site-packages/nvidia/cuda_nvcc/nvvm/lib64/libnvvm.so
Test__linux-64__Python_3.12__CUDA_12.8.0__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-64__Python_3.13__CUDA_12.0.1__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-64__Python_3.13__CUDA_12.8.0__Runner_default__CTK_wheels____test.txt
    /opt/hostedtoolcache/Python/3.13.3/x64/lib/python3.13/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12
    /opt/hostedtoolcache/Python/3.13.3/x64/lib/python3.13/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12
    /opt/hostedtoolcache/Python/3.13.3/x64/lib/python3.13/site-packages/nvidia/cuda_nvcc/nvvm/lib64/libnvvm.so
Test__linux-64__Python_3.13__CUDA_12.8.0__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-64__Python_3.9__CUDA_12.0.1__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-64__Python_3.9__CUDA_12.8.0__Runner_default__CTK_wheels____test.txt
    /opt/hostedtoolcache/Python/3.9.22/x64/lib/python3.9/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12
    /opt/hostedtoolcache/Python/3.9.22/x64/lib/python3.9/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12
    /opt/hostedtoolcache/Python/3.9.22/x64/lib/python3.9/site-packages/nvidia/cuda_nvcc/nvvm/lib64/libnvvm.so
Test__linux-64__Python_3.9__CUDA_12.8.0__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-aarch64__Python_3.10__CUDA_12.0.1__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-aarch64__Python_3.10__CUDA_12.8.0__Runner_default__CTK_wheels____test.txt
    /opt/hostedtoolcache/Python/3.10.17/arm64/lib/python3.10/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12
    /opt/hostedtoolcache/Python/3.10.17/arm64/lib/python3.10/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12
    /opt/hostedtoolcache/Python/3.10.17/arm64/lib/python3.10/site-packages/nvidia/cuda_nvcc/nvvm/lib64/libnvvm.so
Test__linux-aarch64__Python_3.10__CUDA_12.8.0__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-aarch64__Python_3.11__CUDA_12.0.1__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-aarch64__Python_3.11__CUDA_12.8.0__Runner_default__CTK_wheels____test.txt
    /opt/hostedtoolcache/Python/3.11.12/arm64/lib/python3.11/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12
    /opt/hostedtoolcache/Python/3.11.12/arm64/lib/python3.11/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12
    /opt/hostedtoolcache/Python/3.11.12/arm64/lib/python3.11/site-packages/nvidia/cuda_nvcc/nvvm/lib64/libnvvm.so
Test__linux-aarch64__Python_3.11__CUDA_12.8.0__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-aarch64__Python_3.12__CUDA_12.0.1__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-aarch64__Python_3.12__CUDA_12.8.0__Runner_default__CTK_wheels____test.txt
    /opt/hostedtoolcache/Python/3.12.10/arm64/lib/python3.12/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12
    /opt/hostedtoolcache/Python/3.12.10/arm64/lib/python3.12/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12
    /opt/hostedtoolcache/Python/3.12.10/arm64/lib/python3.12/site-packages/nvidia/cuda_nvcc/nvvm/lib64/libnvvm.so
Test__linux-aarch64__Python_3.12__CUDA_12.8.0__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-aarch64__Python_3.13__CUDA_12.0.1__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-aarch64__Python_3.13__CUDA_12.8.0__Runner_default__CTK_wheels____test.txt
    /opt/hostedtoolcache/Python/3.13.3/arm64/lib/python3.13/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12
    /opt/hostedtoolcache/Python/3.13.3/arm64/lib/python3.13/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12
    /opt/hostedtoolcache/Python/3.13.3/arm64/lib/python3.13/site-packages/nvidia/cuda_nvcc/nvvm/lib64/libnvvm.so
Test__linux-aarch64__Python_3.13__CUDA_12.8.0__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-aarch64__Python_3.9__CUDA_12.0.1__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__linux-aarch64__Python_3.9__CUDA_12.8.0__Runner_default__CTK_wheels____test.txt
    /opt/hostedtoolcache/Python/3.9.22/arm64/lib/python3.9/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12
    /opt/hostedtoolcache/Python/3.9.22/arm64/lib/python3.9/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12
    /opt/hostedtoolcache/Python/3.9.22/arm64/lib/python3.9/site-packages/nvidia/cuda_nvcc/nvvm/lib64/libnvvm.so
Test__linux-aarch64__Python_3.9__CUDA_12.8.0__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0
Test__win-64__Python_3.12__CUDA_12.8.0__Runner_default__CTK_wheels____test.txt
    C:\a\_tool\Python\3.12.10\x64\Lib\site-packages\nvidia\nvjitlink\bin\nvJitLink_120_0.dll
    C:\a\_tool\Python\3.12.10\x64\Lib\site-packages\nvidia\cuda_nvrtc\bin\nvrtc64_120_0.dll
    C:\a\_tool\Python\3.12.10\x64\Lib\site-packages\nvidia\cuda_nvcc\nvvm\bin\nvvm64_40_0.dll
Test__win-64__Python_3.12__CUDA_12.8.0__Runner_default__local_CTK____test.txt
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin\nvJitLink_120_0.dll
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin\nvrtc64_120_0.dll
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\nvvm\bin\nvvm64_40_0.dll

$ cat path_finder_abs_path_from_test_info.py
import sys


def get_info_abs_path(filename):
    print_buffer = [filename]
    done = set()
    for line in open(filename).read().splitlines():
        if "Z INFO " in line:
            flds = line.split(": abs_path=", 1)
            assert len(flds) == 2
            abs_path = eval(flds[1])  # eval undoes repr double backslashes
            if abs_path not in done:
                print_buffer.append(f"    {abs_path}")
                done.add(abs_path)
    return print_buffer


def run(args):
    no_info = []
    has_info = []
    for filename in sorted(args):
        print_buffer = get_info_abs_path(filename)
        assert print_buffer
        if len(print_buffer) == 1:
            no_info.append(print_buffer)
        else:
            has_info.append(print_buffer)
    for print_buffer in no_info + has_info:
        print("\n".join(print_buffer))


if __name__ == "__main__":
    run(args=sys.argv[1:])

@rwgk rwgk force-pushed the path_finder_review1 branch from 2452fdb to b5cef1b Compare April 25, 2025 23:45
@rwgk
Copy link
Collaborator Author

rwgk commented Apr 25, 2025

/ok to test b5cef1b

@rwgk
Copy link
Collaborator Author

rwgk commented Apr 26, 2025

/ok to test 001a6a2

@rwgk
Copy link
Collaborator Author

rwgk commented Apr 30, 2025

@kkraus14 @leofang A small heads-up: Currently this PR has 37 "unresolved conversations". To get a handle on them, I'll make a pass top-to-bottom to respond to the ones that seem most immediately actionable to me. I hope that'll work.

I think I'm through. I'll run the CI again to be sure the PR is still in working condition. If I overlooked something, could you please flag it again?

@rwgk
Copy link
Collaborator Author

rwgk commented Apr 30, 2025

/ok to test 92e7b42a3e43328b9da3d6944c8ce15f6645aa3f

@kkraus14
Copy link
Collaborator

kkraus14 commented May 1, 2025

Test__linux-64__Python_3.10__CUDA_12.0.1__Runner_default__local_CTK____test.txt
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvJitLink.so
    /__w/cuda-python/cuda-python/cuda_toolkit/lib/libnvrtc.so
    /__w/cuda-python/cuda-python/cuda_toolkit/nvvm/lib64/libnvvm.so.4.0.0

Shouldn't we be finding libnvJitLink.so.12 and libnvrtc.so.12?

I wrote the code to not do that, with the idea

  • that we can trust softlinks (it seems very unlikely that someone would tamper with them; and if they do, they'll probably not be surprised if something breaks because if it),
  • and that it makes the search code simpler.

Relevant code in this PR:

After I wrote that code, I found it necessary to tabulate the SUPPORTED_LINUX_SONAMES for other reasons (to make the "is already loaded from elsewhere" check reliable):

I guess we could either prioritize those names as filenames, or even require those filenames. — It's not clear to me how one vs the other approach will play out in the wild. — I'm guessing this could well be an inconsequential nuance.

I'm not sure if this behavior is limited to just the system search, but certain package managers, i.e. conda split packages into runtime and dev packages. I.e. conda has libcublas and libcublas-dev packages, where libcublas contains things needed at runtime, which means it only has the versioned .so files and doesn't have a libcublas.so. libcublas-dev has a libcublas.so which is expected to only be needed at build time for the linker.

We should probably just make sure we're universally using the SONAME of the library unless there's a packaging bug that we need to workaround?

@rwgk
Copy link
Collaborator Author

rwgk commented May 1, 2025

I'm not sure if this behavior is limited to just the system search, but certain package managers, i.e. conda split packages into runtime and dev packages. I.e. conda has libcublas and libcublas-dev packages, where libcublas contains things needed at runtime, which means it only has the versioned .so files and doesn't have a libcublas.so. libcublas-dev has a libcublas.so which is expected to only be needed at build time for the linker.

The versioned names will be found, too, with the code as-is. See # First look for an exact match and # Look for a versioned library in the code I pointed out before.

We should probably just make sure we're universally using the SONAME of the library unless there's a packaging bug that we need to workaround?

We have SUPPORTED_LINUX_SONAMES already. There are two possible approaches making more use of it:

  • Without using the major version of the driver: I could look for the versioned .so filenames, newest first. This is basically what I have already, only currently I do not target specific version numbers.

  • Or I need to add code to determine the major version of the driver, which we currently don't need. (That's why I backed out the Windows version when you commented on it before.)

The only advantage would be that we'd pick out e.g. libcublas.so.12 even in an environment where libcublas.so.11 is found first with the current implementation. That seems like a pretty broken installation (?), I had doubts about adding complexity — and maintenance overhead long term — to accommodate such installations. — Do you think I should invest time into this?

@kkraus14
Copy link
Collaborator

kkraus14 commented May 1, 2025

The versioned names will be found, too, with the code as-is. See # First look for an exact match and # Look for a versioned library in the code I pointed out before.

👍 I didn't follow this properly. https://github.com/rwgk/cuda-python/blob/aeaf4f02278b62befb0e380e9f6f97a50b848fb3/cuda_bindings/cuda/bindings/_path_finder/find_nvidia_dynamic_library.py#L33-L37 This will be potentially problematic. If there's no libcublas.so and there is a libcublas.so.11 and libcublas.so.12 it would return libcublas.so.11.

I think the only way this could happen today is by installing wheels since there's both cu11 and cu12 wheels and it's part of the pkg name which means you can technically install them side by side. If you do a pip install nvidia-cublas-cu11 nvidia-cublas-cu12 you get .../site-packages/nvidia/cublas/lib/libcublas.so.11 and .../site-packages/nvidia/cublas/lib/libcublas.so.12 without a libcublas.so.

Would it maybe make more sense to just looking for the specific version we'd expect based on cuda 11 vs cuda 12?

@rwgk
Copy link
Collaborator Author

rwgk commented May 1, 2025

Would it maybe make more sense to just looking for the specific version we'd expect based on cuda 11 vs cuda 12?

It's definitely more predictable, but I'll need to add in determining the CUDA driver version. I'll work on that.

To explain why I was hesitating before: Maximize portability

Currently this code would work as pure Python code, even without all the rest of cuda.bindings. I believe that determining the CUDA driver version will either introduce a a dependency on cuda.bindings.driver, or if portability is (or becomes at some point) important, we'd need to reimplement a minimalistic version.

@kkraus14
Copy link
Collaborator

kkraus14 commented May 1, 2025

It's definitely more predictable, but I'll need to add in determining the CUDA driver version. I'll work on that.

We shouldn't need to determine the CUDA driver version, we just need the major version which we're already capturing in the cuda.bindings version. You can run cuda.bindings 11.x against the 12.x CUDA driver without issue for example.

We just need a map of CUDA major version --> soname per library I think?

@rwgk
Copy link
Collaborator Author

rwgk commented May 1, 2025

You can run cuda.bindings 11.x against the 12.x CUDA driver without issue for example.

Oh! Thanks, I need to get my head around that.

@leofang
Copy link
Member

leofang commented May 1, 2025

We shouldn't need to determine the CUDA driver version, we just need the major version which we're already capturing in the cuda.bindings version. You can run cuda.bindings 11.x against the 12.x CUDA driver without issue for example.

We just need a map of CUDA major version --> soname per library I think?

There is a catch here, which is what the current cuda.bindings and nvmath.bindings are based on. CUDA 12 driver can run CUDA 11 libraries, but not the other way around. So a mapping from the driver version to the supported CUDA major versions (then to the sonames) is still needed. Ex:

  • driver 12.x -> support CTK 11 & 12 -> 11 & 12 sonames
  • driver 11.x -> support CTK 11 -> 11 sonames only

…ual inspection of cuda_paths.py. Minor additional edits.
@rwgk
Copy link
Collaborator Author

rwgk commented May 1, 2025

There is a catch here, which is what the current cuda.bindings and nvmath.bindings are based on. CUDA 12 driver can run CUDA 11 libraries, but not the other way around. So a mapping from the driver version to the supported CUDA major versions (then to the sonames) is still needed. Ex:

  • driver 12.x -> support CTK 11 & 12 -> 11 & 12 sonames
  • driver 11.x -> support CTK 11 -> 11 sonames only

Question, scoped to the _find_dll_using_nvidia_bin_dirs and _find_so_using_nvidia_lib_dirs implementations, which are effectively searching for wheels (note that these pre-empt cuda_paths.py searches):

Currently I'm looking through sys.path (which includes site-packages) in order, and I stop as soon as I'm finding libname.so (first), or libname.so* (as fallback).

If we're now targeting, e.g., "just 11" or "12 or 11", do we want to fully traverse sys.path to enumerate all possible matches, then rank them and return the "best" match?

@leofang
Copy link
Member

leofang commented May 1, 2025

(btw I merged #593)

@rwgk rwgk force-pushed the path_finder_review1 branch from e2d6682 to a7b0633 Compare May 1, 2025 17:50
@rwgk rwgk force-pushed the path_finder_review1 branch from a7b0633 to fc22b1d Compare May 1, 2025 17:51
@rwgk
Copy link
Collaborator Author

rwgk commented May 1, 2025

/ok to test aeaf4f0

@kkraus14
Copy link
Collaborator

kkraus14 commented May 1, 2025

If we're now targeting, e.g., "just 11" or "12 or 11", do we want to fully traverse sys.path to enumerate all possible matches, then rank them and return the "best" match?

We want to find the library as if the extension module was normally built and linked against the library we're finding, which means that it would only search for the SONAME, so I would think we should return the first match of "just 11" in the case of having been built for CUDA 11.

@@ -0,0 +1,78 @@
#!/usr/bin/env python3
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

do we need the shebang?

@@ -0,0 +1,88 @@
#!/usr/bin/env python3
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ditto

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
cuda.bindings Everything related to the cuda.bindings module feature New feature or request P0 High priority - Must do!
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants