-
Notifications
You must be signed in to change notification settings - Fork 429
Open
Labels
enhancementNew feature or requestNew feature or requestmcp-serversMCP Server SamplesMCP Server SamplesoicOpen Innovation Community ContributionsOpen Innovation Community ContributionspythonPython / backend development (FastAPI)Python / backend development (FastAPI)
Milestone
Description
Overview
Create a comprehensive MCP Server for IBM Granite Geospatial Models supporting Earth observation data analysis, satellite imagery processing, environmental monitoring, and geospatial AI applications using NASA-IBM collaboration models.
Server Specifications
Server Details
- Name:
granite-geospatial-server - Language: Python 3.11+
- Location:
mcp-servers/python/granite_geospatial_server/ - Purpose: Provide geospatial AI capabilities via IBM-NASA Granite models
Supported Models
From IBM Granite Geospatial on Hugging Face:
- Foundation Model: granite-geospatial-fm (NASA-IBM Earth Observations)
- Satellite Analysis: granite-satellite-imagery-v1, granite-landsat-analysis
- Climate Models: granite-climate-prediction, granite-weather-forecasting
- Environmental: granite-forest-monitoring, granite-water-quality-assessment
- Urban Planning: granite-urban-change-detection, granite-infrastructure-mapping
Data Sources
- Satellite Imagery: Landsat, MODIS, Sentinel, GOES
- Climate Data: NOAA, NASA Earth Observing System
- Environmental: EPA, USGS, World Bank Open Data
- Custom: User-provided geospatial datasets
Provider Support
- Ollama: Local inference with geospatial models
- watsonx.ai: IBM's enterprise geospatial AI platform
- Hugging Face: Direct access to NASA-IBM geospatial models
- Custom Endpoints: Integration with geospatial data platforms
Tools Provided
1. analyze_satellite_imagery
Comprehensive satellite image analysis and interpretation
@dataclass
class SatelliteImageryRequest:
image_data: str # Satellite image or coordinates for data retrieval
model: str = "granite-satellite-imagery-v1"
provider: str = "ollama"
analysis_type: str = "land_cover" # land_cover, change_detection, vegetation, water, urban
temporal_analysis: bool = False
coordinate_system: str = "EPSG:4326" # WGS84
resolution: str = "30m" # spatial resolution
output_format: str = "geojson" # geojson, shapefile, raster2. monitor_environmental_changes
Track and analyze environmental changes over time
@dataclass
class EnvironmentalMonitoringRequest:
location: Dict[str, float] # lat, lon, or bounding box
model: str = "granite-forest-monitoring"
provider: str = "watsonx"
monitoring_type: str = "deforestation" # deforestation, urbanization, water_quality, air_quality
time_range: Dict[str, str] # start_date, end_date
alert_thresholds: Optional[Dict[str, float]] = None
change_detection: bool = True3. predict_climate_patterns
Climate and weather pattern prediction and analysis
@dataclass
class ClimatePredictionRequest:
location: Dict[str, float]
model: str = "granite-climate-prediction"
provider: str = "huggingface"
prediction_type: str = "temperature" # temperature, precipitation, drought, floods
forecast_horizon: str = "30_days" # 7_days, 30_days, seasonal, annual
include_uncertainty: bool = True
historical_context: bool = True4. assess_water_quality
Water body analysis and quality assessment
@dataclass
class WaterQualityRequest:
water_body_location: Dict[str, float]
model: str = "granite-water-quality-assessment"
provider: str = "ollama"
quality_parameters: List[str] = ["turbidity", "chlorophyll", "temperature", "pollution"]
satellite_source: str = "sentinel2" # landsat8, sentinel2, modis
temporal_aggregation: str = "monthly" # daily, weekly, monthly
contamination_detection: bool = True5. detect_urban_changes
Urban development and infrastructure change detection
@dataclass
class UrbanChangeRequest:
urban_area: Dict[str, Any] # city name or coordinates
model: str = "granite-urban-change-detection"
provider: str = "watsonx"
change_types: List[str] = ["construction", "demolition", "roads", "green_spaces"]
time_comparison: Dict[str, str] # before_date, after_date
infrastructure_mapping: bool = True
population_impact: bool = False6. analyze_agricultural_areas
Agricultural monitoring and crop analysis
@dataclass
class AgriculturalAnalysisRequest:
farm_location: Dict[str, float]
model: str = "granite-geospatial-fm"
provider: str = "huggingface"
analysis_type: str = "crop_health" # crop_health, yield_prediction, soil_moisture, disease_detection
crop_type: Optional[str] = None
growing_season: Optional[Dict[str, str]] = None
weather_integration: bool = True7. map_natural_disasters
Natural disaster mapping and impact assessment
@dataclass
class DisasterMappingRequest:
disaster_location: Dict[str, float]
model: str = "granite-geospatial-fm"
provider: str = "ollama"
disaster_type: str = "flood" # flood, wildfire, earthquake, hurricane, drought
impact_assessment: bool = True
damage_estimation: bool = True
recovery_monitoring: bool = False
evacuation_planning: bool = False8. generate_geospatial_insights
Comprehensive geospatial analysis and reporting
@dataclass
class GeospatialInsightsRequest:
area_of_interest: Dict[str, Any]
model: str = "granite-geospatial-fm"
provider: str = "watsonx"
insight_categories: List[str] = ["environmental", "economic", "social", "infrastructure"]
temporal_scope: str = "current" # current, historical, predictive
include_recommendations: bool = True
output_format: str = "report" # report, dashboard, api_responseImplementation Requirements
Directory Structure
mcp-servers/python/granite_geospatial_server/
├── src/
│ └── granite_geospatial_server/
│ ├── __init__.py
│ ├── server.py
│ ├── providers/
│ │ ├── __init__.py
│ │ ├── ollama_geospatial.py
│ │ ├── watsonx_geospatial.py
│ │ ├── huggingface_geospatial.py
│ │ └── nasa_data_provider.py
│ ├── models/
│ │ ├── __init__.py
│ │ ├── granite_geospatial_models.py
│ │ └── earth_observation_models.py
│ ├── processing/
│ │ ├── __init__.py
│ │ ├── satellite_processor.py
│ │ ├── climate_processor.py
│ │ ├── environmental_processor.py
│ │ └── change_detector.py
│ ├── data/
│ │ ├── __init__.py
│ │ ├── satellite_data_loader.py
│ │ ├── climate_data_loader.py
│ │ └── geospatial_utils.py
│ ├── tools/
│ │ ├── __init__.py
│ │ ├── imagery_tools.py
│ │ ├── climate_tools.py
│ │ ├── environmental_tools.py
│ │ └── analysis_tools.py
│ └── utils/
│ ├── __init__.py
│ ├── coordinate_systems.py
│ ├── data_validation.py
│ └── visualization.py
├── tests/
├── requirements.txt
├── README.md
└── examples/
├── satellite_analysis.py
├── climate_monitoring.py
└── environmental_assessment.py
Dependencies
# requirements.txt
mcp>=1.0.0
transformers>=4.35.0
torch>=2.1.0
rasterio>=1.3.0
geopandas>=0.14.0
xarray>=2023.12.0
dask>=2023.12.0
netcdf4>=1.6.0
h5py>=3.10.0
scikit-image>=0.22.0
folium>=0.15.0
plotly>=5.17.0
requests>=2.31.0
pydantic>=2.5.0
ollama>=0.1.7
ibm-watson-machine-learning>=1.0.325
numpy>=1.24.0
pandas>=2.1.0
matplotlib>=3.7.0
cartopy>=0.22.0Configuration
# config.yaml
providers:
ollama:
base_url: "http://localhost:11434"
geospatial_models_enabled: true
timeout: 600 # Longer timeout for large satellite data
watsonx:
url: "https://us-south.ml.cloud.ibm.com"
apikey: "${WATSONX_API_KEY}"
project_id: "${WATSONX_PROJECT_ID}"
geospatial_endpoint: "/ml/v1/geospatial"
huggingface:
api_key: "${HF_API_KEY}"
cache_dir: "./hf_geospatial_cache"
device: "auto"
models:
default_foundation: "granite-geospatial-fm"
default_satellite: "granite-satellite-imagery-v1"
default_climate: "granite-climate-prediction"
default_environmental: "granite-forest-monitoring"
data_sources:
nasa:
earthdata_token: "${NASA_EARTHDATA_TOKEN}"
api_endpoints:
landsat: "https://earthexplorer.usgs.gov/api"
modis: "https://modis.gsfc.nasa.gov/data"
noaa:
api_key: "${NOAA_API_KEY}"
climate_data_url: "https://www.ncei.noaa.gov/data"
satellite_imagery:
max_file_size: "1GB"
supported_formats: ["tiff", "hdf", "netcdf", "geojson"]
cache_duration: "24h"
processing:
max_area_km2: 10000 # Maximum analysis area
spatial_resolution: ["30m", "100m", "250m", "1km"]
temporal_range_years: 50
parallel_processing: true
chunk_size: "512MB"
visualization:
default_map_style: "satellite"
color_schemes: ["viridis", "plasma", "terrain", "ocean"]
export_formats: ["png", "svg", "html", "geojson"]Usage Examples
Satellite Imagery Analysis
# Analyze deforestation in Amazon region
result = await mcp_client.call_tool("analyze_satellite_imagery", {
"image_data": {"lat": -3.4653, "lon": -62.2159, "bbox_km": 50},
"model": "granite-satellite-imagery-v1",
"provider": "ollama",
"analysis_type": "change_detection",
"temporal_analysis": True,
"resolution": "30m",
"output_format": "geojson"
})Environmental Monitoring
# Monitor forest changes over time
result = await mcp_client.call_tool("monitor_environmental_changes", {
"location": {"lat": 45.5231, "lon": -122.6765}, # Portland area
"model": "granite-forest-monitoring",
"provider": "watsonx",
"monitoring_type": "urbanization",
"time_range": {"start_date": "2020-01-01", "end_date": "2024-01-01"},
"change_detection": True
})Climate Prediction
# Predict drought conditions
result = await mcp_client.call_tool("predict_climate_patterns", {
"location": {"lat": 37.7749, "lon": -122.4194}, # San Francisco
"model": "granite-climate-prediction",
"provider": "huggingface",
"prediction_type": "drought",
"forecast_horizon": "seasonal",
"include_uncertainty": True,
"historical_context": True
})Water Quality Assessment
# Assess lake water quality
result = await mcp_client.call_tool("assess_water_quality", {
"water_body_location": {"lat": 43.8554, "lon": -79.3373}, # Lake Ontario
"model": "granite-water-quality-assessment",
"provider": "ollama",
"quality_parameters": ["turbidity", "chlorophyll", "pollution"],
"satellite_source": "sentinel2",
"contamination_detection": True
})Urban Change Detection
# Detect urban development changes
result = await mcp_client.call_tool("detect_urban_changes", {
"urban_area": {"city": "Dubai", "country": "UAE"},
"model": "granite-urban-change-detection",
"provider": "watsonx",
"change_types": ["construction", "roads", "green_spaces"],
"time_comparison": {"before_date": "2015-01-01", "after_date": "2024-01-01"},
"infrastructure_mapping": True
})Agricultural Analysis
# Monitor crop health and yield
result = await mcp_client.call_tool("analyze_agricultural_areas", {
"farm_location": {"lat": 40.7128, "lon": -74.0060, "area_km2": 100},
"model": "granite-geospatial-fm",
"provider": "huggingface",
"analysis_type": "yield_prediction",
"crop_type": "corn",
"weather_integration": True
})Disaster Mapping
# Map flood impact and damage
result = await mcp_client.call_tool("map_natural_disasters", {
"disaster_location": {"lat": 29.7604, "lon": -95.3698}, # Houston
"model": "granite-geospatial-fm",
"provider": "ollama",
"disaster_type": "flood",
"impact_assessment": True,
"damage_estimation": True,
"recovery_monitoring": True
})Advanced Features
- Multi-spectral Analysis: Process data across multiple electromagnetic spectrum bands
- Temporal Analysis: Track changes over time with historical data comparison
- Change Detection: Identify and quantify environmental and urban changes
- Predictive Modeling: Forecast environmental conditions and climate patterns
- Integration APIs: Connect with major satellite data providers and climate databases
- Real-time Processing: Handle streaming satellite data for emergency response
NASA-IBM Collaboration Features
- Earth System Models: Leverage NASA's Earth observation expertise
- Satellite Data Integration: Direct integration with NASA satellite missions
- Climate Research: Advanced climate modeling and prediction capabilities
- Environmental Science: Cutting-edge environmental monitoring algorithms
- Open Science: Support for open data and reproducible research
Enterprise Capabilities
- Scalable Processing: Handle petabyte-scale satellite datasets
- High-Performance Computing: GPU acceleration for large-scale analysis
- API Integration: RESTful APIs for enterprise geospatial applications
- Custom Models: Fine-tuning for specific geographic regions or applications
- Compliance: Environmental reporting and regulatory compliance support
Acceptance Criteria
- Python MCP server with 8+ Granite geospatial model tools
- Support for NASA-IBM Granite geospatial foundation model
- Multi-provider integration with geospatial focus
- Satellite imagery analysis and processing
- Environmental monitoring and change detection
- Climate prediction and weather forecasting
- Water quality and agricultural assessment
- Urban change detection and disaster mapping
- Integration with major satellite data sources
- Geospatial data format support (GeoJSON, Shapefile, NetCDF)
- Comprehensive test suite with sample geospatial data (>90% coverage)
- Complete documentation with Earth observation examples
Priority
High - Demonstrates cutting-edge NASA-IBM geospatial AI collaboration
Use Cases
- Environmental monitoring and conservation
- Climate change research and adaptation
- Disaster response and emergency management
- Urban planning and smart city development
- Agricultural optimization and food security
- Water resource management
- Natural resource exploration
- Infrastructure monitoring and maintenance
- Regulatory compliance and environmental reporting
- Scientific research and Earth system science
Metadata
Metadata
Assignees
Labels
enhancementNew feature or requestNew feature or requestmcp-serversMCP Server SamplesMCP Server SamplesoicOpen Innovation Community ContributionsOpen Innovation Community ContributionspythonPython / backend development (FastAPI)Python / backend development (FastAPI)