Skip to content

Conversation

@iancharest
Copy link
Contributor

@iancharest iancharest commented Jan 18, 2021

Porting the new single trial beta estimates of glmdenoise.

Things to do:

  • robustrange.py
  • picksubset.py
  • findtailthreshold.py
  • finish the first draft of the port.
  • get one subject from irsa to further test.
  • think about splitting into distinct modules for the 4 different GLM flavours.
  • further build tests for the new cases
  • makeimagestack add range normalisation

@iancharest
Copy link
Contributor Author

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
~/Documents/GitHub/pyGLMdenoise/example_singletrial.py in <module>
     81 gst = glm_estimatesingletrial(opt)
     82 
---> 83 gst.fit(
     84     design,
     85     data,

~/Documents/GitHub/pyGLMdenoise/glmdenoise/single_trial.py in fit(self, design, data, stimdur, tr, outputdir)
    691 
    692                 for p in range(params['hrflibrary'].shape[1]):
--> 693                     glm = glm_estimatemodel(optC)
    694                     results0 = glm.fit(
    695                         designSINGLE,

~/Documents/GitHub/pyGLMdenoise/glmdenoise/utils/glm_estimatemodel.py in __init__(self, params)
    114         params = params or dict()
    115         for key, _ in default_params.items():
--> 116             params[key] = params.get(key) or default_params[key]
    117 
    118         self.params = params

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

@iancharest
Copy link
Contributor Author

something iffy about the way i use hrflibrary in this new class like build.

@iancharest
Copy link
Contributor Author

I think this might be ready for review now.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants