An Open source code formatter that uses machine learning to determine the time and space-complexity of your algorithm and its efficiency and recommends a faster and more efficient algorithms of a lower time, and if chosen space-complexity whilst keeping code function and integrity, for Python and Rust (Planned).
- Logging of space and time complexity.
 - Before and after time complexity comparison.
 - Smart variable detection to allow ease of converting.
 - Programming language detection.
 - Revert back to previous algorithm if code errors do occur.
 - Machine learning-based complexity prediction.
 
| Time Complexity | Color | 
|---|---|
| O(1), O(log n) |   #1CF423 | 
| O(n log n) |   #F98FAD | 
| ≤ O(n²) |   #FF4846 | 
python -m algofinder <path_to_python_file>To train the model, you need a CSV file containing the training data. The CSV file should have the following columns:
num_loops: The number of loop statements in the algorithm.num_conditionals: The number of conditional statements in the algorithm.num_variables: The number of variables in the algorithm.num_arrays: The number of arrays in the algorithm.complexity: The complexity of the algorithm.
You can train the model using the following command:
python -m algofinder train <path_to_csv_file>To analyze the complexity of the algorithms in a Python file, use the following command:
python -m algofinder analyze <path_to_python_file>- 
Improved CLI
 - 
Better Variable Detection
 - 
Rust and Other Language Support
 - 
Web Demo
 - 
Language Detection(Done) - 
Use Click For CLI
 



