Skip to content

Conversation

@renovate
Copy link
Contributor

@renovate renovate bot commented Nov 2, 2021

WhiteSource Renovate

This PR contains the following updates:

Package Change Age Adoption Passing Confidence
numpy (source) ==1.21.2 -> ==1.21.4 age adoption passing confidence

Release Notes

numpy/numpy

v1.21.4

Compare Source

NumPy 1.21.4 Release Notes

The NumPy 1.21.4 is a maintenance release that fixes a few bugs
discovered after 1.21.3. The most important fix here is a fix for the
NumPy header files to make them work for both x86_64 and M1 hardware
when included in the Mac universal2 wheels. Previously, the header files
only worked for M1 and this caused problems for folks building x86_64
extensions. This problem was not seen before Python 3.10 because there
were thin wheels for x86_64 that had precedence. This release also
provides thin x86_64 Mac wheels for Python 3.10.

The Python versions supported in this release are 3.7-3.10. If you want
to compile your own version using gcc-11, you will need to use gcc-11.2+
to avoid problems.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Isuru Fernando
  • Matthew Brett
  • Sayed Adel
  • Sebastian Berg
  • 傅立业(Chris Fu) +

Pull requests merged

A total of 9 pull requests were merged for this release.

  • #​20278: BUG: Fix shadowed reference of dtype in type stub
  • #​20293: BUG: Fix headers for universal2 builds
  • #​20294: BUG: VOID_nonzero could sometimes mutate alignment flag
  • #​20295: BUG: Do not use nonzero fastpath on unaligned arrays
  • #​20296: BUG: Distutils patch to allow for 2 as a minor version (!)
  • #​20297: BUG, SIMD: Fix 64-bit/8-bit integer division by a scalar
  • #​20298: BUG, SIMD: Workaround broadcasting SIMD 64-bit integers on MSVC...
  • #​20300: REL: Prepare for the NumPy 1.21.4 release.
  • #​20302: TST: Fix a Arrayterator typing test failure

Checksums

MD5
95486a3ed027c926fb3fc279db6d843e  numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl
9f57fad74762f7665669af33583a3dc9  numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl
719a9053aef01a067ce44ede2281eef9  numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl
72035d101774fd03beff391927f59aa9  numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5813e7a378a6e3f5c269c23f61eff4d9  numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b88a1bc4f08dfb154d5a07d15e387af6  numpy-1.21.4-cp310-cp310-win_amd64.whl
f0cc946d2f4ab4df7cc7e0cc8cfd429e  numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl
1234643306ce481f0e5f801ddf3f1099  numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
b9208ce1695ba61ab2932c7ce7285d1d  numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
9804fe2011618bf2d7b8d92f6860b2e3  numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2ad3a06f974acd61326fd66c098df5bc  numpy-1.21.4-cp37-cp37m-win32.whl
172301389f1532b2d9130362580e1e22  numpy-1.21.4-cp37-cp37m-win_amd64.whl
a037bf88979ae0d4699a0cdce92bbab3  numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl
ba94609688f575cc8dce84f1512db116  numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl
c78edc0ae8c9a5d8d0f9e3eb6dabd0b3  numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl
d683b6f6af46806391579d528a040451  numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
df631f776716aeb3fd705f3659599b9e  numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b1cbca49d24c7ba43d377feb425afdce  numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b5c214bc0f060dbb0287c15dde4673d  numpy-1.21.4-cp38-cp38-win32.whl
2307cf9f3c02f6cdad448a681c272974  numpy-1.21.4-cp38-cp38-win_amd64.whl
fc02b5a068e29b2dd2de19c7ddd69926  numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl
f16068540001de8a3d8f096830c97ea2  numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl
80562c39cfbdf1af9bb43b2ea5e45b6d  numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl
6c103bec3085e5a6ea92cf7f6e4189ab  numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
9d715ba5f7596a39eb631f2dae85d203  numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
8b8cf8c7b093419ff75ed1dd2eaa18ae  numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
404200b858b7addd03f6cdd5a484d30a  numpy-1.21.4-cp39-cp39-win32.whl
cdab6a1bf1b86021526d08a60219a6ad  numpy-1.21.4-cp39-cp39-win_amd64.whl
70ca6b591e844fdcb8c22175f094d3b4  numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
06019c1116b3e2791bd507f898257e7f  numpy-1.21.4.tar.gz
b3c4477a027d5b6fba5e1065064fd076  numpy-1.21.4.zip
SHA256
8890b3360f345e8360133bc078d2dacc2843b6ee6059b568781b15b97acbe39f  numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl
69077388c5a4b997442b843dbdc3a85b420fb693ec8e33020bb24d647c164fa5  numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl
e89717274b41ebd568cd7943fc9418eeb49b1785b66031bc8a7f6300463c5898  numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl
0b78ecfa070460104934e2caf51694ccd00f37d5e5dbe76f021b1b0b0d221823  numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
615d4e328af7204c13ae3d4df7615a13ff60a49cb0d9106fde07f541207883ca  numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1403b4e2181fc72664737d848b60e65150f272fe5a1c1cbc16145ed43884065a  numpy-1.21.4-cp310-cp310-win_amd64.whl
74b85a17528ca60cf98381a5e779fc0264b4a88b46025e6bcbe9621f46bb3e63  numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl
92aafa03da8658609f59f18722b88f0a73a249101169e28415b4fa148caf7e41  numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
5d95668e727c75b3f5088ec7700e260f90ec83f488e4c0aaccb941148b2cd377  numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
f5162ec777ba7138906c9c274353ece5603646c6965570d82905546579573f73  numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
81225e58ef5fce7f1d80399575576fc5febec79a8a2742e8ef86d7b03beef49f  numpy-1.21.4-cp37-cp37m-win32.whl
32fe5b12061f6446adcbb32cf4060a14741f9c21e15aaee59a207b6ce6423469  numpy-1.21.4-cp37-cp37m-win_amd64.whl
c449eb870616a7b62e097982c622d2577b3dbc800aaf8689254ec6e0197cbf1e  numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl
2e4ed57f45f0aa38beca2a03b6532e70e548faf2debbeb3291cfc9b315d9be8f  numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl
1247ef28387b7bb7f21caf2dbe4767f4f4175df44d30604d42ad9bd701ebb31f  numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl
34f3456f530ae8b44231c63082c8899fe9c983fd9b108c997c4b1c8c2d435333  numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
4c9c23158b87ed0e70d9a50c67e5c0b3f75bcf2581a8e34668d4e9d7474d76c6  numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
e4799be6a2d7d3c33699a6f77201836ac975b2e1b98c2a07f66a38f499cb50ce  numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bc988afcea53e6156546e5b2885b7efab089570783d9d82caf1cfd323b0bb3dd  numpy-1.21.4-cp38-cp38-win32.whl
170b2a0805c6891ca78c1d96ee72e4c3ed1ae0a992c75444b6ab20ff038ba2cd  numpy-1.21.4-cp38-cp38-win_amd64.whl
fde96af889262e85aa033f8ee1d3241e32bf36228318a61f1ace579df4e8170d  numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl
c885bfc07f77e8fee3dc879152ba993732601f1f11de248d4f357f0ffea6a6d4  numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl
9e6f5f50d1eff2f2f752b3089a118aee1ea0da63d56c44f3865681009b0af162  numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl
ad010846cdffe7ec27e3f933397f8a8d6c801a48634f419e3d075db27acf5880  numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
c74c699b122918a6c4611285cc2cad4a3aafdb135c22a16ec483340ef97d573c  numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
9864424631775b0c052f3bd98bc2712d131b3e2cd95d1c0c68b91709170890b0  numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b1e2312f5b8843a3e4e8224b2b48fe16119617b8fc0a54df8f50098721b5bed2  numpy-1.21.4-cp39-cp39-win32.whl
e3c3e990274444031482a31280bf48674441e0a5b55ddb168f3a6db3e0c38ec8  numpy-1.21.4-cp39-cp39-win_amd64.whl
a3deb31bc84f2b42584b8c4001c85d1934dbfb4030827110bc36bfd11509b7bf  numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
5d412381aa489b8be82ac5c6a9e99c3eb3f754245ad3f90ab5c339d92f25fb47  numpy-1.21.4.tar.gz
e6c76a87633aa3fa16614b61ccedfae45b91df2767cf097aa9c933932a7ed1e0  numpy-1.21.4.zip

v1.21.3

Compare Source

NumPy 1.21.3 Release Notes

The NumPy 1.21.3 is a maintenance release the fixes a few bugs
discovered after 1.21.2. It also provides 64 bit Python 3.10.0 wheels.
Note a few oddities about Python 3.10:

  • There are no 32 bit wheels for Windows, Mac, or Linux.
  • The Mac Intel builds are only available in universal2 wheels.

The Python versions supported in this release are 3.7-3.10. If you want
to compile your own version using gcc-11 you will need to use gcc-11.2+
to avoid problems.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Aaron Meurer
  • Bas van Beek
  • Charles Harris
  • Developer-Ecosystem-Engineering +
  • Kevin Sheppard
  • Sebastian Berg
  • Warren Weckesser

Pull requests merged

A total of 8 pull requests were merged for this release.

  • #​19745: ENH: Add dtype-support to 3 `generic/ndarray methods
  • #​19955: BUG: Resolve Divide by Zero on Apple silicon + test failures...
  • #​19958: MAINT: Mark type-check-only ufunc subclasses as ufunc aliases...
  • #​19994: BUG: np.tan(np.inf) test failure
  • #​20080: BUG: Correct incorrect advance in PCG with emulated int128
  • #​20081: BUG: Fix NaT handling in the PyArray_CompareFunc for datetime...
  • #​20082: DOC: Ensure that we add documentation also as to the dict for...
  • #​20106: BUG: core: result_type(0, np.timedelta64(4)) would seg. fault.

Checksums

MD5
9acea9630856659ba48fdb582ecc37b4  numpy-1.21.3-cp310-cp310-macosx_10_9_universal2.whl
a70f80a4e74a3153a8307c4f0ea8d13d  numpy-1.21.3-cp310-cp310-macosx_11_0_arm64.whl
13cfe83efd261ea1c3d1eb02c1d3af83  numpy-1.21.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8576bfd867834182269f72abbaa2e81e  numpy-1.21.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8ac48f503f1e22c0c2b5d056772aca27  numpy-1.21.3-cp310-cp310-win_amd64.whl
cbe0d0d7623de3c2c7593f673d1a880a  numpy-1.21.3-cp37-cp37m-macosx_10_9_x86_64.whl
0967b18baba13e511c7eb48902a62b39  numpy-1.21.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
da54c9566f3e3f8c7d60efebfdf7e1ae  numpy-1.21.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
0aa000f3c10cf74bf47770577384b5c8  numpy-1.21.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5683501bf91be25c53c52e3b083098c3  numpy-1.21.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
89e15d979533f8a314e0ab0648ee7153  numpy-1.21.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
a093fea475b5ed18bd21b3c79e68e388  numpy-1.21.3-cp37-cp37m-win32.whl
f906001213ed0902b1aecfaa12224e94  numpy-1.21.3-cp37-cp37m-win_amd64.whl
88a2cd378412220d618473dd273baf04  numpy-1.21.3-cp38-cp38-macosx_10_9_universal2.whl
1bc55202f604e30f338bc2ed27b561bc  numpy-1.21.3-cp38-cp38-macosx_10_9_x86_64.whl
9555dc6de8748958434e8f2feba98494  numpy-1.21.3-cp38-cp38-macosx_11_0_arm64.whl
93ad32cc87866e9242156bdadc61e5f5  numpy-1.21.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
7cb0b7dd6aee667ecdccae1829260186  numpy-1.21.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
34e6f5f9e9534ef8772f024170c2bd2d  numpy-1.21.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
54e6abfb8f600de2ccd1649b1fca820b  numpy-1.21.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
260ba58f2dc64e779eac7318ec92f36c  numpy-1.21.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
889202c6bdaf8c1ae0803925e9e1a8f7  numpy-1.21.3-cp38-cp38-win32.whl
980303a7e6317faf9a56ba8fc80795d9  numpy-1.21.3-cp38-cp38-win_amd64.whl
44d6bd26fb910710ab4002d0028c9020  numpy-1.21.3-cp39-cp39-macosx_10_9_universal2.whl
6f5b02152bd0b08a77b79657788ce59c  numpy-1.21.3-cp39-cp39-macosx_10_9_x86_64.whl
ad05d5c412d15e7880cd65cc6cdd4aac  numpy-1.21.3-cp39-cp39-macosx_11_0_arm64.whl
5b61a91221931af4a78c3bd20925a91f  numpy-1.21.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
df7344ae04c5a54249fa1b63a256ce61  numpy-1.21.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
c653a096da47b64b42e8f1536a21f7d4  numpy-1.21.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0d35451ba1c37f96e032bc6f75ccdf7  numpy-1.21.3-cp39-cp39-win32.whl
b2e1dc59b6fa224ce11728d94be740a6  numpy-1.21.3-cp39-cp39-win_amd64.whl
8ce925a0fcbc1062985026215d369276  numpy-1.21.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b8e6b7165f105bde0b45cd9ae34bfe20  numpy-1.21.3.tar.gz
59d986f5ccf3edfb7d4d14949c6666ed  numpy-1.21.3.zip
SHA256
508b0b513fa1266875524ba8a9ecc27b02ad771fe1704a16314dc1a816a68737  numpy-1.21.3-cp310-cp310-macosx_10_9_universal2.whl
5dfe9d6a4c39b8b6edd7990091fea4f852888e41919d0e6722fe78dd421db0eb  numpy-1.21.3-cp310-cp310-macosx_11_0_arm64.whl
8a10968963640e75cc0193e1847616ab4c718e83b6938ae74dea44953950f6b7  numpy-1.21.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
49c6249260890e05b8111ebfc391ed58b3cb4b33e63197b2ec7f776e45330721  numpy-1.21.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f8f4625536926a155b80ad2bbff44f8cc59e9f2ad14cdda7acf4c135b4dc8ff2  numpy-1.21.3-cp310-cp310-win_amd64.whl
e54af82d68ef8255535a6cdb353f55d6b8cf418a83e2be3569243787a4f4866f  numpy-1.21.3-cp37-cp37m-macosx_10_9_x86_64.whl
f41b018f126aac18583956c54544db437f25c7ee4794bcb23eb38bef8e5e192a  numpy-1.21.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
50cd26b0cf6664cb3b3dd161ba0a09c9c1343db064e7c69f9f8b551f5104d654  numpy-1.21.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
4cc9b512e9fb590797474f58b7f6d1f1b654b3a94f4fa8558b48ca8b3cfc97cf  numpy-1.21.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88a5d6b268e9ad18f3533e184744acdaa2e913b13148160b1152300c949bbb5f  numpy-1.21.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
3c09418a14471c7ae69ba682e2428cae5b4420a766659605566c0fa6987f6b7e  numpy-1.21.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
90bec6a86b348b4559b6482e2b684db4a9a7eed1fa054b86115a48d58fbbf62a  numpy-1.21.3-cp37-cp37m-win32.whl
043e83bfc274649c82a6f09836943e4a4aebe5e33656271c7dbf9621dd58b8ec  numpy-1.21.3-cp37-cp37m-win_amd64.whl
75621882d2230ab77fb6a03d4cbccd2038511491076e7964ef87306623aa5272  numpy-1.21.3-cp38-cp38-macosx_10_9_universal2.whl
188031f833bbb623637e66006cf75e933e00e7231f67e2b45cf8189612bb5dc3  numpy-1.21.3-cp38-cp38-macosx_10_9_x86_64.whl
160ccc1bed3a8371bf0d760971f09bfe80a3e18646620e9ded0ad159d9749baa  numpy-1.21.3-cp38-cp38-macosx_11_0_arm64.whl
29fb3dcd0468b7715f8ce2c0c2d9bbbaf5ae686334951343a41bd8d155c6ea27  numpy-1.21.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
32437f0b275c1d09d9c3add782516413e98cd7c09e6baf4715cbce781fc29912  numpy-1.21.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
e606e6316911471c8d9b4618e082635cfe98876007556e89ce03d52ff5e8fcf0  numpy-1.21.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a99a6b067e5190ac6d12005a4d85aa6227c5606fa93211f86b1dafb16233e57d  numpy-1.21.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
dde972a1e11bb7b702ed0e447953e7617723760f420decb97305e66fb4afc54f  numpy-1.21.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
fe52dbe47d9deb69b05084abd4b0df7abb39a3c51957c09f635520abd49b29dd  numpy-1.21.3-cp38-cp38-win32.whl
75eb7cadc8da49302f5b659d40ba4f6d94d5045fbd9569c9d058e77b0514c9e4  numpy-1.21.3-cp38-cp38-win_amd64.whl
2a6ee9620061b2a722749b391c0d80a0e2ae97290f1b32e28d5a362e21941ee4  numpy-1.21.3-cp39-cp39-macosx_10_9_universal2.whl
5c4193f70f8069550a1788bd0cd3268ab7d3a2b70583dfe3b2e7f421e9aace06  numpy-1.21.3-cp39-cp39-macosx_10_9_x86_64.whl
28f15209fb535dd4c504a7762d3bc440779b0e37d50ed810ced209e5cea60d96  numpy-1.21.3-cp39-cp39-macosx_11_0_arm64.whl
c6c2d535a7beb1f8790aaa98fd089ceab2e3dd7ca48aca0af7dc60e6ef93ffe1  numpy-1.21.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
bffa2eee3b87376cc6b31eee36d05349571c236d1de1175b804b348dc0941e3f  numpy-1.21.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
cc14e7519fab2a4ed87d31f99c31a3796e4e1fe63a86ebdd1c5a1ea78ebd5896  numpy-1.21.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dd0482f3fc547f1b1b5d6a8b8e08f63fdc250c58ce688dedd8851e6e26cff0f3  numpy-1.21.3-cp39-cp39-win32.whl
300321e3985c968e3ae7fbda187237b225f3ffe6528395a5b7a5407f73cf093e  numpy-1.21.3-cp39-cp39-win_amd64.whl
98339aa9911853f131de11010f6dd94c8cec254d3d1f7261528c3b3e3219f139  numpy-1.21.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d0bba24083c01ae43457514d875f10d9ce4c1125d55b1e2573277b2410f2d068  numpy-1.21.3.tar.gz
63571bb7897a584ca3249c86dd01c10bcb5fe4296e3568b2e9c1a55356b6410e  numpy-1.21.3.zip

Configuration

📅 Schedule: At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, click this checkbox.

This PR has been generated by WhiteSource Renovate. View repository job log here.

@renovate renovate bot force-pushed the renovate/numpy-1.x branch from a88327d to b23c745 Compare November 5, 2021 02:10
@renovate renovate bot changed the title Update dependency numpy to v1.21.3 Update dependency numpy to v1.21.4 Nov 5, 2021
@renovate renovate bot force-pushed the renovate/numpy-1.x branch from b23c745 to 240db31 Compare November 15, 2021 09:25
@guilyx guilyx merged commit d759239 into main Nov 15, 2021
@renovate renovate bot deleted the renovate/numpy-1.x branch November 15, 2021 09:26
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants