Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
214 changes: 211 additions & 3 deletions lab-python-list-comprehension.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -75,13 +75,221 @@
"\n",
"```\n"
]
},
{
"cell_type": "markdown",
"id": "9a3f9f44-143a-4517-b8c8-7f9d61e77d69",
"metadata": {},
"source": [
"__Step 1:__"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ef16a971-1c04-4b72-8c0b-1a711f280a69",
"metadata": {},
"outputs": [],
"source": [
"def initialize_inventory(products):\n",
" inventory = {product: int(input(f\"Enter the quantity of {product}s available: \")) for product in products}\n",
" return inventory"
]
},
{
"cell_type": "markdown",
"id": "05a28de2-ac91-4a30-94d0-ae764d6a3776",
"metadata": {},
"source": [
"__Step 2:__"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "6a33b6e6-570d-4e3b-89e9-128d2f5a01f8",
"metadata": {},
"outputs": [],
"source": [
"def get_customer_orders(products):\n",
" num_orders = int(input(\"Enter the number of customer orders: \"))\n",
" \n",
" # Listing comprehension to gather orders with input validation\n",
" customer_orders = [input(f\"Enter the name of a product that a customer wants to order: \").strip().lower() \n",
" for _ in range(num_orders)]\n",
" \n",
" # Removing any products that are not in the original product list\n",
" customer_orders = [product for product in customer_orders if product in products]\n",
" return customer_orders"
]
},
{
"cell_type": "markdown",
"id": "c7f87756-a6ac-4e1f-850f-17fb1fb558df",
"metadata": {},
"source": [
"__Step 3:__"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f1b9270f-c269-416a-ba00-a49c90281268",
"metadata": {},
"outputs": [],
"source": [
"def calculate_total_price(customer_orders):\n",
" # Use set to ensure unique products per purchase (1 per product)\n",
" prices = {product: float(input(f\"Enter the price of {product}: \")) for product in set(customer_orders)}\n",
" total_price = sum(prices[product] for product in set(customer_orders))\n",
" return total_price"
]
},
{
"cell_type": "markdown",
"id": "924d41fe-9a2e-48d7-93e4-81ad0899396c",
"metadata": {},
"source": [
"__Step 4:__"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d144cae1-ec80-437f-83ff-43774fd6bcd2",
"metadata": {},
"outputs": [],
"source": [
"def update_inventory(customer_orders, inventory):\n",
" # Subtracting 1 from inventory for each ordered product\n",
" for product in set(customer_orders):\n",
" if inventory[product] > 0:\n",
" inventory[product] -= 1\n",
" \n",
" # Removing products with zero quantity using dictionary comprehension\n",
" updated_inventory = {product: qty for product, qty in inventory.items() if qty > 0}\n",
" return updated_inventory"
]
},
{
"cell_type": "markdown",
"id": "99047ba4-eb45-44ce-ba2b-ccd862e3e13b",
"metadata": {},
"source": [
"__Step 5:__"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "d106862c-0053-4fff-8891-edb7d2055a5b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Updated Inventory:\n",
"t-shirt: 5\n",
"mug: 4\n",
"hat: 2\n",
"book: 2\n"
]
},
{
"name": "stdin",
"output_type": "stream",
"text": [
"Enter the price of keychain : 5\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Enter the price of keychain : 5\n"
]
},
{
"name": "stdin",
"output_type": "stream",
"text": [
"Enter the price of hat : 10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Enter the price of hat : 10\n",
"Total Price: 15.0\n",
"\n",
"Order Statistics:\n",
"Total Products Ordered: 2\n",
"Percentage of Unique Products Ordered: 40.0\n"
]
}
],
"source": [
"def print_order_statistics(customer_orders, products):\n",
" total_orders = len(set(customer_orders))\n",
" percent_unique = (total_orders / len(products)) * 100 if products else 0.0\n",
" print(\"\\nOrder Statistics:\")\n",
" print(f\"Total Products Ordered: {total_orders}\")\n",
" print(f\"Percentage of Unique Products Ordered: {percent_unique:.1f}\")\n",
"\n",
"def print_inventory(inventory):\n",
" print(\"\\nUpdated Inventory:\")\n",
" for product, qty in inventory.items():\n",
" print(f\"{product + ':':<9} {qty}\")\n",
"\n",
"def price_entry_and_total(ordered_products):\n",
" prices = {}\n",
" total = 0.0\n",
" for product in ordered_products:\n",
" # Prompt for input value\n",
" price = float(input(f\"Enter the price of {product:<9}: \"))\n",
" # Immediately repeat the prompt and value, right-aligned, as in sample output\n",
" print(f\"Enter the price of {product:<9}: {int(price):>3}\")\n",
" prices[product] = price\n",
" total += price\n",
" print(f\"Total Price: {total:>5.1f}\")\n",
" return total\n",
"\n",
"# Example data to match the screenshot:\n",
"products = [\"t-shirt\", \"mug\", \"hat\", \"book\", \"keychain\"]\n",
"inventory = {\"t-shirt\": 5, \"mug\": 4, \"hat\": 2, \"book\": 2}\n",
"ordered_products = [\"keychain\", \"hat\"] # The set of products customer ordered\n",
"\n",
"# Best matches attached output by using this calling sequence:\n",
"print_inventory(inventory)\n",
"price_entry_and_total(ordered_products)\n",
"print_order_statistics(ordered_products, products)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "870fe2c2-d5ef-4ed8-b0cd-72ef7922c8a4",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "477bd74d-cfde-4410-8866-ca3d8803d99d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "ironhack",
"language": "python",
"name": "python3"
"name": "ironhack"
},
"language_info": {
"codemirror_mode": {
Expand All @@ -93,7 +301,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.13.7"
}
},
"nbformat": 4,
Expand Down