Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
267 changes: 267 additions & 0 deletions .ipynb_checkpoints/lab-python-functions-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,267 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "25d7736c-ba17-4aff-b6bb-66eba20fbf4e",
"metadata": {},
"source": [
"# Lab | Functions"
]
},
{
"cell_type": "markdown",
"id": "0c581062-8967-4d93-b06e-62833222f930",
"metadata": {
"tags": []
},
"source": [
"## Exercise: Managing Customer Orders with Functions\n",
"\n",
"In the previous exercise, you improved the code for managing customer orders by using loops and flow control. Now, let's take it a step further and refactor the code by introducing functions.\n",
"\n",
"Follow the steps below to complete the exercise:\n",
"\n",
"1. Define a function named `initialize_inventory` that takes `products` as a parameter. Inside the function, implement the code for initializing the inventory dictionary using a loop and user input.\n",
"\n",
"2. Define a function named `get_customer_orders` that takes no parameters. Inside the function, implement the code for prompting the user to enter the product names using a loop. The function should return the `customer_orders` set.\n",
"\n",
"3. Define a function named `update_inventory` that takes `customer_orders` and `inventory` as parameters. Inside the function, implement the code for updating the inventory dictionary based on the customer orders.\n",
"\n",
"4. Define a function named `calculate_order_statistics` that takes `customer_orders` and `products` as parameters. Inside the function, implement the code for calculating the order statistics (total products ordered, and percentage of unique products ordered). The function should return these values.\n",
"\n",
"5. Define a function named `print_order_statistics` that takes `order_statistics` as a parameter. Inside the function, implement the code for printing the order statistics.\n",
"\n",
"6. Define a function named `print_updated_inventory` that takes `inventory` as a parameter. Inside the function, implement the code for printing the updated inventory.\n",
"\n",
"7. Call the functions in the appropriate sequence to execute the program and manage customer orders.\n",
"\n",
"Hints for functions:\n",
"\n",
"- Consider the input parameters required for each function and their return values.\n",
"- Utilize function parameters and return values to transfer data between functions.\n",
"- Test your functions individually to ensure they work correctly.\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e8df1555-fa94-4d84-9078-e166cb079869",
"metadata": {},
"outputs": [],
"source": [
"# Product list from previous labs\n",
"\n",
"products = [\"t-shirt\", \"mug\", \"hat\", \"book\", \"keychain\"]\n",
"\n",
"# 1 Initialize_inventory(products)\n",
"\n",
"def initialize_inventory(products):\n",
" \"\"\"\n",
" Ask for quantities once per product and build the inventory dict.\n",
" Returns: dict{product: quantity}\n",
" \"\"\"\n",
" inventory = {}\n",
" for p in products:\n",
" qty= int(input(f\"Enter the quantity for {p}: \"))\n",
" inventory[p] = qty\n",
" return inventory\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "16d28735-d4df-4da0-93a6-4f6c87b03325",
"metadata": {},
"outputs": [],
"source": [
"# 2 Define get_customer_orders(products)\n",
"\n",
"def get_customer_orders(products):\n",
" \"\"\"\n",
" Ask the user for product names in a lopp.\n",
" Returns: set of unique ordered products. \n",
" \"\"\"\n",
" customer_orders = set()\n",
" while True:\n",
" order = input(\"Enter the name of a product to order: \")\n",
" if order in products:\n",
" customer_orders.add(order)\n",
" else:\n",
" print(f\"{order} is not available.\")\n",
" more = input(\"Do you want to add another product? (yes/no): \")\n",
" if more != \"yes\":\n",
" break\n",
" return customer_orders"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "51d74c53-e1c8-4051-ad0a-71ae396ec0d6",
"metadata": {},
"outputs": [],
"source": [
"# 3 Define update_inventory(customer_orders,inventory)\n",
"\n",
"def update_inventory(customer_orders, inventory):\n",
" \"\"\"\n",
" Substract 1 from each ordered product that exist in the inventory.\n",
" Returne the updated inventory dict.\n",
" \"\"\"\n",
" for item in customer_orders:\n",
" if item in inventory:\n",
" inventory[item] -= 1\n",
" return inventory\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "1e64de76-f594-4045-bee0-a83202308a3c",
"metadata": {},
"outputs": [],
"source": [
"#4 Define calculate_order_statistics\n",
"\n",
"def calculate_order_statistics(customer_orders, products):\n",
" \"\"\"\n",
" Compute total products ordered and percentage of catalog.\n",
" Returns: (total, percentage)\n",
" \"\"\"\n",
" total = len(customer_orders)\n",
" percentage = (total / len(products)) * 100\n",
" return (total, percentage)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a93885e5-e792-476c-bbb1-eea156622b19",
"metadata": {},
"outputs": [],
"source": [
"#5 Define print_order_statistics\n",
"\n",
"def print_order_statistics(order_statistics):\n",
" \"\"\"\n",
" Print the order statistics tuple.\n",
" \"\"\"\n",
" total, percentage = order_statistics\n",
" print(\"Order Statistics\")\n",
" print(\"Total Products Ordered:\", total)\n",
" print(\"Percentage of Products Ordered:\", percentage)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "066d9ded-13cc-4745-bfd5-2c5165a5c44d",
"metadata": {},
"outputs": [],
"source": [
"#6 Define print _updated_inventory\n",
"\n",
"def print_updated_inventory(inventory):\n",
" \"\"\"\n",
" Print inventory, one line per item format. \n",
" \"\"\"\n",
" print(\"Updated inventory:\")\n",
" for product in inventory:\n",
" print(product, \":\", inventory[product])\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "526cb404-5c10-4a62-84f5-295a8fe8490f",
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"Enter the quantity for t-shirt: 45\n",
"Enter the quantity for mug: 85\n",
"Enter the quantity for hat: 65\n",
"Enter the quantity for book: 25\n",
"Enter the quantity for keychain: 30\n",
"Enter the name of a product to order: hat\n",
"Do you want to add another product? (yes/no): yes\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Order Statistics\n",
"Total Products Ordered: 1\n",
"Percentage of Products Ordered: 20.0\n",
"Updated inventory:\n",
"t-shirt : 45\n",
"mug : 85\n",
"hat : 64\n",
"book : 25\n",
"keychain : 30\n"
]
}
],
"source": [
"#7 Run the program in sequence\n",
"products = [\"t-shirt\", \"mug\", \"hat\", \"book\", \"keychain\"]\n",
"\n",
"#1 Initialize inventory\n",
"inventory = initialize_inventory(products)\n",
"\n",
"#2 Get customer orders\n",
"customer_orders = get_customer_orders(products)\n",
"\n",
"#3 Update Inventory\n",
"inventory = update_inventory(customer_orders, inventory)\n",
"\n",
"#4 Calculate order statistics\n",
"stats = calculate_order_statistics(customer_orders, products)\n",
"\n",
"#5 Print order statistic\n",
"print_order_statistics(stats)\n",
"\n",
"#6 Print updated inventory\n",
"print_updated_inventory(inventory)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc3bcec4-4f2f-4762-af81-a1481e733c8f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading