Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
160 changes: 158 additions & 2 deletions lab-python-data-structures.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -50,11 +50,167 @@
"\n",
"Solve the exercise by implementing the steps using the Python concepts of lists, dictionaries, sets, and basic input/output operations. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Step 1: Define the list of products\n",
"products = [\"t-shirt\", \"mug\", \"hat\", \"book\", \"keychain\"]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Step 2: Create an inventory with predefined quantities\n",
"inventory = {\n",
" \"t-shirt\": 5,\n",
" \"mug\": 3,\n",
" \"hat\": 2,\n",
" \"book\": 4,\n",
" \"keychain\": 6\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Step 3: Create an empty set for customer orders\n",
"customer_orders = set()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# Step 4: Simulate user selecting three products\n",
"selected_orders = [\"mug\", \"book\", \"hat\"] # puedes cambiar estos valores\n",
"for order in selected_orders:\n",
" if order in products:\n",
" customer_orders.add(order)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Customer Orders:\n",
"- hat\n",
"- mug\n",
"- book\n"
]
}
],
"source": [
"# Step 5: Print customer orders\n",
"print(\"\\nCustomer Orders:\")\n",
"for item in customer_orders:\n",
" print(\"-\", item)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"\n",
"# Step 6: Calculate order statistics\n",
"total_products_ordered = len(customer_orders)\n",
"percentage_ordered = (total_products_ordered / len(products)) * 100"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Step 7: Store statistics in a tuple\n",
"order_status = (total_products_ordered, percentage_ordered)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Order Statistics:\n",
"Total Products Ordered: 3\n",
"Percentage of Products Ordered: 60.00%\n"
]
}
],
"source": [
"# Step 8: Print order statistics\n",
"print(\"\\nOrder Statistics:\")\n",
"print(\"Total Products Ordered:\", order_status[0])\n",
"print(f\"Percentage of Products Ordered: {order_status[1]:.2f}%\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# Step 9: Update inventory (subtract 1 for each ordered product)\n",
"for item in customer_orders:\n",
" if inventory[item] > 0:\n",
" inventory[item] -= 1"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Updated Inventory:\n",
"t-shirt: 5\n",
"mug: 2\n",
"hat: 1\n",
"book: 3\n",
"keychain: 6\n"
]
}
],
"source": [
"# Step 10: Print updated inventory\n",
"print(\"\\nUpdated Inventory:\")\n",
"for product, quantity in inventory.items():\n",
" print(f\"{product}: {quantity}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
Expand All @@ -68,7 +224,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.12.9"
}
},
"nbformat": 4,
Expand Down